
Authorization using RBAC 

 

Scenario 
 

Many applications in today's computation scenarios are distributed and composed by services 
and clients. 

Suppose that a certain distributed application uses a remote service in two different servers 
(assume that the REST architecture (using the HTTP protocol) is used as an implementation) 
with at least three distinct operations each. Each operation consumes parameters and 
produces a result. Some of the operations in the first server also call operations on the second 
server. 

In this kind of application we define 3 roles with different privileges to call the services 
operations. Also we need to define at least three users associated with one or more of the 
roles. These associations and role privileges can be configured and hold on a file or database, 
associated with an authentication and authorization server. 

We need to enforce the users privileges denying access (not returning a result) to the 
operations that are not allowed in the roles that the invoking user is on. Also, if the user is 
allowed to invoke an operation in a service, and that service calls another, that invocation 
should succeed only if the user is also allowed to invoke directly that second operation. 

An administrator should be able to originate the users security data (user identity, roles’ 
definition, allowed operations in each roles, users in each role). 

 

Implementation 
 
A proof of concept for this distributed system should be implemented using some web server 

software (like, for instance, Node.js). You can define any operations in the servers. On the 

same computer those servers must run on different ports. The client application(s) should also 

be web applications supporting any browser. The Authentication/Authorization server 

(implementing a web service) is a fourth web server in the system. 

The user authentication mechanism, performed in the Authentication service, should verify 

the user identity, and when successful, generate a pair of asymmetric cryptographic keys, valid 

for that user and session with the client application. Also the role of the user should be 

determined and used in an RBAC (Role Based Access Control) system to allow (or not) the call 

of operations in the two operation servers (available as links in the client app). 

As a suggestion, we can use a simplified version of the OAuth and OpenId protocols for 

authentication and authorization, as depicted in the following figure. 

The private key generated for a user and session can be used to sign identification and/or 

authorization tokens (appropriate JSON tokens can be used), sent in a redirection from the 



AuthN/AuthZ server, after a successful user authentication. The public key generated is put 

on a certificate and can be sent (or retrieved) to the client server by its initiative. 

All communications should have confidentiality and integrity protection (TLS) and the requests 

from the client and services servers to the authentication server should also be done in a 

secure manner. The authentication/authorization data (stored in the AuthN/AuthZ server 

and/or Service servers) should be specially protected. 

 

You should use trusted libraries in your proof of concept, namely concerning cryptography. 

Note that this suggestion is a simplification of standard protocols with proof of possession 

(PoP). 

In a production system the full specifications of OAuth and OpenID, with all security 

protections, should be used. 

 

Report 
 

The report should describe the architecture that you have chosen for a proof of concept, as 
well as an explanation of all design decisions that you have made. Consider also the main 
threats that a system with these functionalities can have, and how they are mitigated in your 
design and implementation. 

Examples and results demonstrating the correct working of the authentication and 
authorization mechanism should also be included (including the system response to wrong or 
malicious uses). 

Client app 
(web server)

AuthN/AuthZ
(web server)

Service 2 
(web server)

Service 1 
(web server)

Id token

get role

call

call
certificate

user

browser

admin


