Ensemble Techniques

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Ensemble Methods

- Construct a set of base classifiers learned from the training data
- Predict class label of test records by combining the predictions made by multiple classifiers (e.g., by taking majority vote)

Example: Why Do Ensemble Methods Work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\epsilon = 0.35$
 - Majority vote of classifiers used for classification
 - If all classifiers are identical:
 - Error rate of ensemble = ϵ (0.35)
 - If all classifiers are independent (errors are uncorrelated):

 Error rate of ensemble = probability of having more than half of base classifiers being wrong

$$e_{\text{ensemble}} = \sum_{i=13}^{25} {\binom{25}{i}} \epsilon^i (1-\epsilon)^{25-i} = 0.06$$

Necessary Conditions for Ensemble Methods

Ensemble Methods work better than a single base classifier if:

- 1. All base classifiers are independent of each other
- 2. All base classifiers perform better than random guessing (error rate < 0.5 for binary classification)

Classification error for an ensemble of 25 base classifiers, assuming their errors are uncorrelated.

Rationale for Ensemble Learning

Ensemble Methods work best with unstable base classifiers

- Classifiers that are sensitive to minor perturbations in training set, due to *high model complexity*
- Examples: Unpruned decision trees, ANNs, ...

Bias-Variance Decomposition

 Analogous problem of reaching a target y by firing projectiles from x (regression problem)

 For classification, the generalization error of model m can be given by:

gen.error(m) = bias(m) + variance(m) + noise(m)

Bias-Variance Trade-off and Overfitting

Ensemble methods try to reduce the variance of complex models (with low bias) by aggregating responses of multiple base classifiers

10/11/2021

General Approach of Ensemble Learning

Constructing Ensemble Classifiers

By manipulating training set

- Example: bagging, boosting, random forests

By manipulating input features

- Example: random forests
- By manipulating class labels
 - Example: error-correcting output coding
- By manipulating learning algorithm
 - Example: injecting randomness in the initial weights of ANN

Bagging (Bootstrap AGGregatING)

Bootstrap sampling: sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

Build classifier on each bootstrap sample

Probability of a training instance being selected in a bootstrap sample is:

> $1 - (1 - 1/n)^n$ (n: number of training instances)

> ~0.632 when n is large

Algorithm 4.5 Bagging algorithm.

- 1: Let k be the number of bootstrap samples.
- 2: for i = 1 to k do
- 3: Create a bootstrap sample of size N, D_i .
- 4: Train a base classifier C_i on the bootstrap sample D_i .
- 5: end for

6:
$$C^*(x) = \underset{y}{\operatorname{argmax}} \sum_i \delta(C_i(x) = y).$$

 $\{\delta(\cdot) = 1 \text{ if its argument is true and } 0 \text{ otherwise.}\}$

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	-1	7	-1	-1	1	1	1

Classifier is a decision stump (decision tree of size 1)

- Decision rule: $x \le k$ versus x > k
- Split point k is chosen based on entropy

Introduction to Data Mining, 2nd Edition

B	aggir	ng Rour	nd 1:									_
	X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	x <= 0.35 ➔ y = 1
	у	1	1	1	1	-1	-1	-1	-1	1	1	x > 0.35 → y = -1

Summary of Trained Decision Stumps:

Round	Split Point	Left Class	Right Class
1	0.35	1	-1
2	0.7	1	1
3	0.35	1	-1
4	0.3	1	-1
5	0.35	1	-1
6	0.75	-1	1
7	0.75	-1	1
8	0.75	-1	1
9	0.75	-1	1
10	0.05	1	1

 Use majority vote (sign of sum of predictions) to determine class of ensemble classifier

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	1	1	1	-1	-1	-1	-1	-1	-1	-1
2	1	1	1	1	1	1	1	1	1	1
3	1	1	1	-1	-1	-1	-1	-1	-1	-1
4	1	1	1	-1	-1	-1	-1	-1	-1	-1
5	1	1	1	-1	-1	-1	-1	-1	-1	-1
6	-1	-1	-1	-1	-1	-1	-1	1	1	1
7	-1	-1	-1	-1	-1	-1	-1	1	1	1
8	-1	-1	-1	-1	-1	-1	-1	1	1	1
9	-1	-1	-1	-1	-1	-1	-1	1	1	1
10	1	1	1	1	1	1	1	1	1	1
Sum	2	2	2	-6	-6	-6	-6	2	2	2
Sign	1	1	1	-1	-1	-1	-1	1	1	1

Predicted Class

> Bagging can also increase the complexity (representation capacity) of simple classifiers such as decision stumps

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights (for being selected for training)
 - Unlike bagging, weights may change at the end of each boosting round

Boosting

- Records that are wrongly classified will have their weights increased in the next round
- Records that are classified correctly will have their weights decreased in the next round

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

AdaBoost

D Base classifiers: $C_1, C_2, ..., C_T$

Error rate of a base classifier:

$$\epsilon_i = \frac{1}{N} \sum_{j=1}^N w_j^{(i)} \,\delta(C_i(x_j) \neq y_j)$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

AdaBoost Algorithm

Weight update: (eq. 1)

$$w_j^{(i+1)} = \frac{w_j^{(i)}}{Z_i} \times \begin{cases} e^{-\alpha_i} & \text{if } C_i(x_j) = y_j \\ e^{\alpha_i} & \text{if } C_i(x_j) \neq y_j \end{cases}$$

Where Z_i is the normalization factor

If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
Classification: T

$$C^*(x) = \arg \max_{y} \sum_{i=1}^{r} \alpha_i \delta(C_i(x) = y)$$

AdaBoost Algorithm

Algorithm 4.6 AdaBoost algorithm.

1: $\mathbf{w} = \{w_j = 1/N \mid j = 1, 2, \dots, N\}.$ {Initialize the weights for all N examples.}

- 2: Let k be the number of boosting rounds.
- 3: for i = 1 to k do
- 4: Create training set D_i by sampling (with replacement) from D according to \mathbf{w} .
- 5: Train a base classifier C_i on D_i .
- 6: Apply C_i to all examples in the original training set, D.
- 7: $\epsilon_i = \frac{1}{N} \left[\sum_j w_j \, \delta \left(C_i(x_j) \neq y_j \right) \right] \quad \{ \text{Calculate the weighted error.} \}$
- 8: if $\epsilon_i > 0.5$ then
- 9: $\mathbf{w} = \{w_j = 1/N \mid j = 1, 2, \dots, N\}.$ {Reset the weights for all N examples.}
- 10: Go back to Step 4.
- 11: **end if**
- 12: $\alpha_i = \frac{1}{2} \ln \frac{1-\epsilon_i}{\epsilon_i}.$
- 13: Update the weight of each example according to Equation 1, slide 21
- 14: end for

15:
$$C^*(\mathbf{x}) = \underset{y}{\operatorname{argmax}} \sum_{j=1}^T \alpha_j \delta(C_j(\mathbf{x}) = y)).$$

AdaBoost Example

Consider 1-dimensional data set:

Original Data:

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
У	1	1	1	7	7	-	7	1	1	1

Classifier is a decision stump

- Decision rule: $x \le k$ versus x > k
- Split point k is chosen based on entropy

Introduction to Data Mining, 2nd Edition

AdaBoost Example

Training sets for the first 3 boosting rounds:

Boosti	ng Rour	nd 1:								
X	0.1	0.4	0.5	0.6	0.6	0.7	0.7	0.7	0.8	1
У	1	-1	-1	-1	-1	-1	-1	-1	1	1
Boostiu										
DUUSII	iy Noui									
X	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
У	1	1	1	1	1	1	1	1	1	1
Boostii	ng Rour	nd 3:								
X	0.2	0.2	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
У	1	1	-1	-1	-1	-1	-1	-1	-1	-1

□ Summary:

Round	Split Point	Left Class	Right Class	alpha
1	0.75	-1	1	1.738
2	0.05	1	1	2.7784
3	0.3	1	-1	4.1195

AdaBoost Example

Weights

Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

Classification

	Round	x=0.1	x=0.2	x=0.3	x=0.4	x=0.5	x=0.6	x=0.7	x=0.8	x=0.9	x=1.0
	1	-1	-1	-1	-1	-1	-1	-1	1	1	1
	2	1	1	1	1	1	1	1	1	1	1
	3	1	1	1	-1	-1	-1	-1	-1	-1	-1
	Sum	5.16	5.16	5.16	-3.08	-3.08	-3.08	-3.08	0.397	0.397	0.397
redicted	Sign	1	1	1	-1	-1	-1	-1	1	1	1

P CI ass

Random Forest Algorithm

- Construct an ensemble of decision trees by manipulating training set as well as features
 - Use bootstrap sample to train every decision tree (similar to Bagging)
 - Use the following tree induction algorithm:
 - At every internal node of decision tree, randomly sample p attributes for selecting split criterion
 - Repeat this procedure until all leaves are pure (unpruned tree)

Characteristics of Random Forest

- Base classifiers are unpruned trees and hence are unstable classifiers
- Base classifiers are *decorrelated* (due to randomization in training set as well as features)
- Random forests reduce variance of unstable classifiers without negatively impacting the bias
- Selection of hyper-parameter p
 - Small value ensures lack of correlation
 - High value promotes strong base classifiers
 - Common default choices: \sqrt{d} , $\log_2(d+1)$

Gradient Boosting

Constructs a series of models

- Models can be any predictive model that has a differentiable loss function
- Commonly, trees are the chosen model

 XGboost (extreme gradient boosting) is a popular package because of its impressive performance

- Boosting can be viewed as optimizing the loss function by iterative functional gradient descent.
- Implementations of various boosted algorithms are available in Python, R, Matlab, and more.