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Ensemble Methods

Construct a set of base classifiers learned from 

the training data

Predict class label of test records by combining 

the predictions made by multiple classifiers (e.g., 

by taking majority vote)
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Example: Why Do Ensemble Methods Work?
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Necessary Conditions for Ensemble Methods

Ensemble Methods work better than a single base classifier if:

1. All base classifiers are independent of each other

2. All base classifiers perform better than random guessing 

(error rate < 0.5 for binary classification)

4

Classification error for an 

ensemble of 25 base classifiers, 

assuming their errors are 

uncorrelated. 
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Rationale for Ensemble Learning

Ensemble Methods work best with unstable 

base classifiers

– Classifiers that are sensitive to minor perturbations in 

training set, due to high model complexity

– Examples: Unpruned decision trees, ANNs, …
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Bias-Variance Decomposition

Analogous problem of reaching a target y by firing 

projectiles from x (regression problem)

For classification, the generalization error of model 𝑚 can 

be given by:

 𝑔𝑒𝑛. 𝑒𝑟𝑟𝑜𝑟 𝑚 = 𝑏𝑖𝑎𝑠 𝑚 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑚) + noise (𝑚)
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Bias-Variance Trade-off and Overfitting 

Ensemble methods try to reduce the variance of complex 

models (with low bias) by aggregating responses of 

multiple base classifiers

7

Underfitting

Overfitting
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General Approach of Ensemble Learning

8

Using majority vote or 

weighted majority vote 

(weighted according to their 

accuracy or relevance)
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Constructing Ensemble Classifiers

By manipulating training set
– Example: bagging, boosting, random forests

By manipulating input features
– Example: random forests

By manipulating class labels
– Example: error-correcting output coding
 

By manipulating learning algorithm
– Example: injecting randomness in the initial weights of  ANN
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Bagging (Bootstrap AGGregatING)

Bootstrap sampling: sampling with replacement

Build classifier on each bootstrap sample

Probability of a training instance being selected in 

a bootstrap sample is:

➢ 1 – (1 - 1/n)n (n: number of training instances)

➢ ~0.632 when n is large 

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7
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Bagging Algorithm
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Bagging Example

Consider 1-dimensional data set:

Classifier is a decision stump (decision tree of size 1)

– Decision rule:  x  k versus x > k

– Split point k is chosen based on entropy

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

x  k

yleft yright

True False
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Bagging Example

Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9

y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1

y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35  y = 1

x > 0.35  y = -1
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Bagging Example

Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9

y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1

y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.7  y = 1

x > 0.7  y = 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.3  y = 1

x > 0.3  y = -1

x <= 0.35  y = 1

x > 0.35  y = -1
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Bagging Example

Bagging Round 6:

x 0.2 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 1

y 1 -1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 7:

x 0.1 0.4 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1

y 1 -1 -1 -1 -1 1 1 1 1 1

Bagging Round 8:

x 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.8 0.9 1

y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 9:

x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1

y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 10:

x 0.1 0.1 0.1 0.1 0.3 0.3 0.8 0.8 0.9 0.9

y 1 1 1 1 1 1 1 1 1 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.05  y = 1

x > 0.05  y = 1
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Bagging Example

Summary of Trained Decision Stumps:

Round Split Point Left Class Right Class

1 0.35 1 -1

2 0.7 1 1

3 0.35 1 -1

4 0.3 1 -1

5 0.35 1 -1

6 0.75 -1 1

7 0.75 -1 1

8 0.75 -1 1

9 0.75 -1 1

10 0.05 1 1
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Bagging Example

Use majority vote (sign of sum of predictions) to 

determine class of ensemble classifier

Bagging can also increase the complexity (representation 

capacity) of simple classifiers such as decision stumps

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 1 1 1 -1 -1 -1 -1 -1 -1 -1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

4 1 1 1 -1 -1 -1 -1 -1 -1 -1

5 1 1 1 -1 -1 -1 -1 -1 -1 -1

6 -1 -1 -1 -1 -1 -1 -1 1 1 1

7 -1 -1 -1 -1 -1 -1 -1 1 1 1

8 -1 -1 -1 -1 -1 -1 -1 1 1 1

9 -1 -1 -1 -1 -1 -1 -1 1 1 1

10 1 1 1 1 1 1 1 1 1 1

Sum 2 2 2 -6 -6 -6 -6 2 2 2

Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted 

Class
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Boosting

An iterative procedure to adaptively change 

distribution of training data by focusing more on 

previously misclassified records

– Initially, all N records are assigned equal 

weights (for being selected for training)

– Unlike bagging, weights may change at the 

end of each boosting round
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Boosting

Records that are wrongly classified will have their 

weights increased in the next round

Records that are classified correctly will have 

their weights decreased in the next round

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more 

likely to be chosen again in subsequent rounds
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AdaBoost

Base classifiers: C1, C2, …, CT

Error rate of a base classifier:

Importance of a classifier: 
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AdaBoost Algorithm

Weight update: (eq. 1)

If any intermediate rounds produce error rate 

higher than 50%, the weights are reverted back 

to 1/n and the resampling procedure is repeated

Classification:
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AdaBoost Algorithm
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AdaBoost Example

Consider 1-dimensional data set:

Classifier is a decision stump

– Decision rule:  x  k versus x > k

– Split point k is chosen based on entropy

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

x  k

yleft yright

True False
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AdaBoost Example

Training sets for the first 3 boosting rounds:

Summary:

Boosting Round 1:

x 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1

y 1 -1 -1 -1 -1 -1 -1 -1 1 1

Boosting Round 2:

x 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3

y 1 1 1 1 1 1 1 1 1 1

Boosting Round 3:

x 0.2 0.2 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7

y 1 1 -1 -1 -1 -1 -1 -1 -1 -1

Round Split Point Left Class Right Class alpha

1 0.75 -1 1 1.738

2 0.05 1 1 2.7784

3 0.3 1 -1 4.1195
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AdaBoost Example

Weights

Classification

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 0.311 0.311 0.311 0.01 0.01 0.01 0.01 0.01 0.01 0.01

3 0.029 0.029 0.029 0.228 0.228 0.228 0.228 0.009 0.009 0.009

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 -1 -1 -1 -1 -1 -1 -1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

Sum 5.16 5.16 5.16 -3.08 -3.08 -3.08 -3.08 0.397 0.397 0.397

Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted 

Class
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Random Forest Algorithm

Construct an ensemble of decision trees by 

manipulating training set as well as features

– Use bootstrap sample to train every decision 

tree (similar to Bagging)

– Use the following tree induction algorithm:

◆ At every internal node of decision tree, randomly 

sample p attributes for selecting split criterion

◆ Repeat this procedure until all leaves are pure 

(unpruned tree)
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Characteristics of Random Forest
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Gradient Boosting

Constructs a series of models 

– Models can be any predictive model that has 

a differentiable loss function

– Commonly, trees are the chosen model

◆ XGboost (extreme gradient boosting) is a popular 

package because of its impressive performance

Boosting can be viewed as optimizing the loss 

function by iterative functional gradient descent.

Implementations of various boosted algorithms 

are available in Python, R, Matlab, and more.
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