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Artificial Neural Networks (ANN)

0 Basic Idea: A complex non-linear function can be
learned as a composition of simple processing units

0 ANN is a collection of simple processing units
(nodes) that are connected by directed links (edges)

— Every node receives signals from incoming edges, performs
computations, and transmits signals to outgoing edges

— Analogous to human brain where nodes are neurons and signals
are electrical impulses

— Weight of an edge determines the strength of connection
between the nodes

0 Simplest ANN: Perceptron (single neuron)
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Basic Architecture of Perceptron
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Activation Function

0 Learns linear decision boundaries

0 Related to logistic regression (activation function is sign
instead of sigmoid)
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Perceptron Example
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Output Y is 1 if at least two of the three inputs are equal to 1.
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Perceptron Example
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Perceptron Learning Rule

0 Initialize the weights (wg, Wy, ..., Wy)
0 Repeat
— For each training example (x;, y;)
+ Compute y;
+ Update the weights:

k+1 k (k
0 Until stopping condition is met

0 k: iteration number; A: learning rate
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Perceptron Learning Rule

0 Weight update formula:

w§k+1):w§k) Ay - (k)

0 Intuition:

— Update weight based on error: e = (y; — ¥i)
+lf y =9, e=0: no update needed

olf y > 9y, e=2: weight must be increased (assuming Xij is
positive) so that y will increase

olf y <9, e=-2: weight must be decreased (assuming Xij is
positive) so that y will decrease
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Example of Perceptron Learning
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Weight updates over first epoch
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Perceptron Learning

0 Since y is a linear
combination of input
variables, decision
boundary is linear
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Nonlinearly Separable Data

For nonlinearly separable problems, perceptron learning
algorithm will fail because no linear hyperplane can
separate the data perfectly
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Multi-layer Neural Network
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Multi-layer Neural Network

0 Multi-layer neural networks with at least one
hidden layer can solve any type of classification
task involving nonlinear decision surfaces

XOR Data

Input Hidden Output
Layer Layer Layer
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Why Multiple Hidden Layers?

0 Activations at hidden layers can be viewed as features
extracted as functions of inputs

0 Every hidden layer represents a level of abstraction
— Complex features are compositions of simpler features

n r ﬁ H.‘J-’ —
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Cembhol ¥

0 Number of layers is known as depth of ANN
— Deeper networks express complex hierarchy of features
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Multi-Layer Network Architecture
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Activation Functions
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Learning Multi-layer Neural Network

0 Can we apply perceptron learning rule to each
node, including hidden nodes?

— Perceptron learning rule computes error term
e =y - y and updates weights accordingly

¢ Problem: how to determine the true value of y for
hidden nodes?

— Approximate error in hidden nodes by error in
the output nodes
¢ Problem:

— Not clear how adjustment in the hidden nodes affect overall
error

— No guarantee of convergence to optimal solution
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Gradient Descent

0 Loss Function to measure errors across all training points

(w,b) ZL”“"" o Squared Loss:

_ . n\2
Loss (Yk, k) = (Y — k)~

0 Gradient descent: Update parameters in the direction of
“maximum descent” in the loss function across all points

1 o Ok
dw;; A: learning rate
E
b — - A
' c)b

0 Stochastic gradient descent (SGD): update the weight for every
instance (minibatch SGD: update over min-batches of instances)
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Computing Gradients
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0 Using chain rule of differentiation (on a single instance):
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0 For sigmoid activation function:
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0 How can we compute §; for every layer?
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Backpropagation Algorithm

0 At output layer L:

YA Loss d(y — rr’(‘)z o L
o = — & . = 2(a” — ).
Dal Oal

0 At a hidden layer [ (using chain rule):

5; = Z(5§+1 X (1§+1(1 Hl) X u‘gjl).
i
— Gradients at layer | can be computed using gradients at layer | + 1
— Start from layer L and “backpropagate” gradients to all previous
layers
0 Use gradient descent to update weights at every epoch

0 For next epoch, use updated weights to compute loss fn. and its gradient
0 lterate until convergence (loss does not change)
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Design Issues in ANN

0 Number of nodes in input layer
— One input node per binary/continuous attribute
— korlog, k nodes for each categorical attribute with k values

0 Number of nodes in output layer
— One output for binary class problem
— korlog, k nodes for k-class problem

0 Number of hidden layers and nodes per layer
0 Initial weights and biases

0 Learning rate, max. number of epochs, mini-batch size for
mini-batch SGD, ...
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Characteristics of ANN

0 Multilayer ANN are universal approximators but could
suffer from overfitting if the network is too large

— Naturally represents a hierarchy of features at multiple levels of
abstractions

0 Gradient descent may converge to local minimum
0 Model building is compute intensive, but testing is fast

0 Can handle redundant and irrelevant attributes because
weights are automatically learnt for all attributes

0 Sensitive to noise in training data

— This issue can be addressed by incorporating model complexity
in the loss function

0 Difficult to handle missing attributes
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Deep Learning Trends

0 Training deep neural networks (more than 5-10 layers) could only be
possible in recent times with:

— Faster computing resources (GPU)
— Larger labeled training sets
0 Algorithmic Improvements in Deep Learning
— Responsive activation functions (e.g., RELU)
— Regularization (e.g., Dropout)
— Supervised pre-training
— Unsupervised pre-training (auto-encoders)
0 Specialized ANN Architectures:
— Convolutional Neural Networks (for image data)
— Recurrent Neural Networks (for sequence data)
— Residual Networks (with skip connections)

0 Generative Models: Generative Adversarial Networks
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