Data Mining

Model Overfitting

Introduction to Data Mining, 2" Edition

by
Tan, Steinbach, Karpatne, Kumar

02/03/2021 Introduction to Data Mining, 2"9 Edition



Classification Errors

0 Training errors: Errors committed on the training set

0 Test errors: Errors committed on the test set

0 Generalization errors: Expected error of a model over random selection of records from same distribution

Tid  Attrib1 Attrib2 Attrib3 Class Learnlng
1 Yes Large 125K No algorithm
2 No Medium 100K No
3 No Small 70K No
4 Yes Medium 120K No IndUCtion
5 No Large 95K Yes
6 No Medium 60K No \
7 | Yes Large 220K No Learn
8 |No Small 85K Yes Model
9 |No Medium | 75K No \ ﬁ
10 [ No Small 90K Yes ﬁ
Training Set / m
Apply
Tid  Attrib1 Attrib2 Attrib3 MOdeI
11 | No Small 55K ? /
12 | Yes Medium 80K ?
13 | Yes Large 110K ? Deduction
14 | No Small 95K ?
15 [ No Large 67K ?
Test Set

02/03/2021 Introduction to Data Mining, 2" Edition



Example Data Set
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Two class problem:
+ : 5400 instances

* 5000 instances generated

from a Gaussian centered at
(10,10)

* 400 noisy instances added

o : 5400 instances

* Generated from a uniform
distribution

10 % of the data used for
training and 90% of the
data used for testing



Error

Increasing number of nodes in Decision Trees
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Decision Tree with 4 nodes

Error
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Decision Tree with 50 nodes
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Error

Which tree is better?
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Decision Tree with 4 nodes

Which tree is better ?
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Decision Tree with 50 nodes —
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Model Underfitting and Overfitting
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*As the model becomes more and more complex, test errors can start

increasing even though training error may be decreasing
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Underfitting: when model is too simple, both training and test errors are large

160

Overfitting: when model is too complex, training error is small but test error is large
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Error

Model Overfitting — Impact of Training Data Size
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Using twice the number of data instances

» Increasing the size of training data reduces the difference between training and
testing errors at a given size of model
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Error

Model Overfitting — Impact of Training Data Size
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Using twice the number of data instances

» Increasing the size of training data reduces the difference between training and
testing errors at a given size of model
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Reasons for Model Overfitting

0 Not enough training data

0 High model complexity

— In the case, for example, of decision trees, the deeper
the tree, the smaller the number of training examples
for a choice of a higher number of attributes: Multiple

Comparison Procedure issue

02/03/2021 Introduction to Data Mining, 2"9 Edition 1



Effect of Multiple Comparison Procedure

0 Consider the task of predicting whether
stock market will rise/fall in the next 10
trading days

0 Random guessing:
P(correct) = 0.5

0 Make 10 random guesses in a row:

10 10 10
8 T 9 T 10
P(#correct > 8) = =0.0547

210

02/03/2021 Introduction to Data Mining, 2"9 Edition

Day1 |Up
Day 2 |Down
Day 3 |Down
Day4 |Up
Day 5 |Down
Day 6 |Down
Day 7 |Up
Day 8 |Up
Day9 |[Up
Day 10 | Down

12




Effect of Multiple Comparison Procedure

0 Approach:
— Get 50 analysts
— Each analyst makes 10 random guesses

— Choose the analyst that makes the most
number of correct predictions

0 Probability that at least one analyst makes at
least 8 correct predictions

P(#correct >28)=1—(1-0.0547)" =0.9399

02/03/2021 Introduction to Data Mining, 2"9 Edition
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Effect of Multiple Comparison Procedure

0 Many algorithms employ the following greedy strategy:
— Initial model: M

— Alternative model: M' =M U v,
where vy is a component to be added to the model
(e.g., a test condition of a decision tree)

— Keep M’ if improvement, A(M,M’) > a

0 Often times, y is chosen from a set of alternative
components, I' = {y4, v5, ---, Y&}

o If many alternatives are available, one may inadvertently
add irrelevant components to the model, resulting in
model overfitting

02/03/2021 Introduction to Data Mining, 2"9 Edition 14



Notes on Overfitting

0 Overfitting results in decision trees that are more
complex than necessary

0 Training error does not provide a good estimate
of how well the tree will perform on previously
unseen records

0 Need ways for estimating generalization errors

02/03/2021 Introduction to Data Mining, 2"9 Edition 15



Model Selection

0 Performed during model building

0 Purpose is to ensure that model is not overly
complex (to avoid overfitting)

0 Need to estimate generalization error
— Using Validation Set

— Incorporating Model Complexity

02/03/2021 Introduction to Data Mining, 2"9 Edition
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Model Selection:

Using Validation Set

0 Divide training data into two parts:
— Training set:
+ use for model building
— Validation set:

+ use for estimating generalization error
¢ Note: validation set is not the same as test set

0 Drawback:
— Less data available for training

02/03/2021 Introduction to Data Mining, 2"9 Edition
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Model Selection:

Incorporating Model Complexity

0 Rationale: Occam’s Razor

— Given two models of similar generalization errors,
one should prefer the simpler model over the more
complex model

— A complex model has a greater chance of being fitted
accidentally

— Therefore, one should include model complexity when
evaluating a model

Gen. Error(Model) = Train. Error(Model, Train. Data) +
@ x Complexity(Model)

02/03/2021 Introduction to Data Mining, 2"9 Edition 18



Estimating the Complexity of Decision Trees

0 Pessimistic Error Estimate of decision tree T
with k leaf nodes:

errgen(1’) = err(T) + 2 x ,k

1”"1" Erain

— err(T): error rate on all training records

— Q: trade-off hyper-parameter (similar to «)
+ Relative cost of adding a leaf node

— k: number of leaf nodes
— N, total number of training records

02/03/2021 Introduction to Data Mining, 2"9 Edition 19



Estimating the Complexity of Decision Trees: Example

e(T,) = 4/24

e(Ty) = 6/24

Decision Tree, T, Decision Tree, T,

€gen(TL) = 4/24 + 1%7/24 = 11/24 = 0.458

€gen(Tr) = 6/24 + 1*4/24 = 10/24 = 0.417

02/03/2021 Introduction to Data Mining, 2" Edition 20



Estimating the Complexity of Decision Trees

0 Resubstitution Estimate:

— Using training error as an optimistic estimate of
generalization error

— Referred to as optimistic error estimate

e(T,) = 4/24

e(Ty) = 6/24

Decision Tree, T, Decision Tree, Ty

02/03/2021 Introduction to Data Mining, 2" Edition 21



Minimum Description Length (MDL)

X es A (0]

X4 }Il Y/ WA X y
0 B?

X; | 0 3 N ;1 Z
Xs 0 A c? 1 . X2 ,?
C4 C, !
X4 1 / \< Xj o
f E 0 1 f S :
X, 1 X, ?

o0 Cost(Model,Data) = Cost(Data|Model) + @ x Cost(Model)
— Cost is the number of bits needed for encoding.
— Search for the least costly model.

0 Cost(Data|Model) encodes the misclassification errors.

0 Cost(Model) uses node encoding (number of children)
plus splitting condition encoding.
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Model Selection for Decision Trees

0 Pre-Pruning (Early Stopping Rule)
— Stop the algorithm before it becomes a fully-grown tree

— Typical stopping conditions for a node:
+ Stop if all instances belong to the same class
¢ Stop if all the attribute values result in the same class value

— More restrictive conditions:

+ Stop if number of instances is less than some user-specified
threshold

+ Stop if class distribution of instances are independent of the
available features (e.g., using y 2 test)

¢ Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).

+ Stop if estimated generalization error falls below certain threshold

02/03/2021 Introduction to Data Mining, 2"9 Edition 23



Model Selection for Decision Trees

0 Post-pruning
— Grow decision tree to its entirety

— Subtree replacement

¢ Trim the nodes of the decision tree in a bottom-up
fashion

+ If generalization error improves after trimming,
replace sub-tree by a leaf node

# Class label of leaf node is determined from
majority class of instances in the sub-tree

02/03/2021 Introduction to Data Mining, 2"9 Edition
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Example of Post-Pruning

Class = Yes

20

Class = No

10

Error = 10/30

A1

Training Error (Before splitting) = 10/30
Pessimistic error = (10 + 0.5)/30 = 10.5/30
Training Error (After splitting) = 9/30
Pessimistic error (After splitting)
=(9+4x0.5)/30 =11/30
PRUNE!

A4

A3

Class=Yes | 8 Class = Yes

Class=Yes | 4 Class=Yes | 5

Class = No 4 Class = No

Class = No 1 Class = No 1

02/03/2021
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Model Evaluation

0 Purpose:

— To estimate performance of classifier on previously
unseen data (test set)

0 Holdout
— Reserve k% for training and (100-k)% for testing
— Random subsampling: repeated holdout
0 Cross validation
— Partition data into k disjoint subsets
— k-fold: train on k-1 partitions, test on the remaining one
— Leave-one-out: k=n

02/03/2021 Introduction to Data Mining, 2"9 Edition
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Cross-validation Example

0 3-fold cross-validation

02/03/2021 Introduction to Data Mining, 2" Edition

Bl Test Set
Training Set
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Variations on Cross-validation

0 Repeated cross-validation
— Perform cross-validation a number of times

— Gives an estimate of the variance of the
generalization error

0 Stratified cross-validation

— Guarantee the same percentage of class
labels in training and test

— Important when classes are imbalanced and
the sample is small

0 Use nested cross-validation approach for model
selection and evaluation

02/03/2021 Introduction to Data Mining, 2"9 Edition 28
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