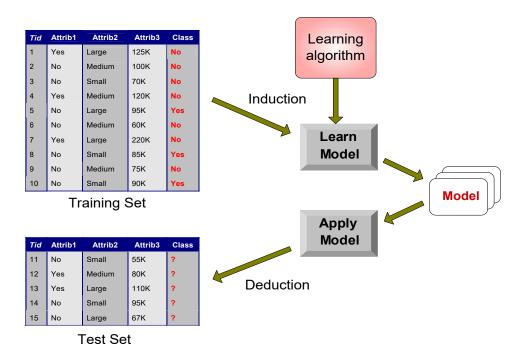
Model Overfitting

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

02/03/2021

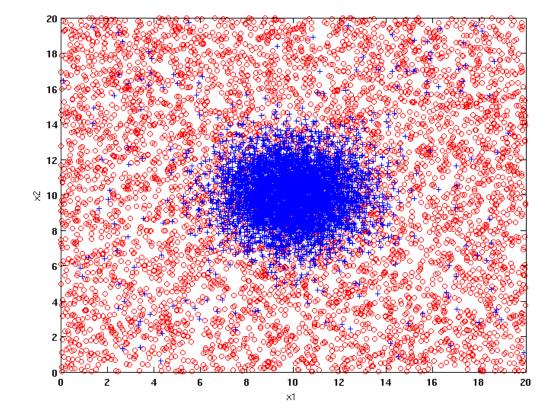
Classification Errors

- **Training errors**: Errors committed on the training set
- □ **Test errors**: Errors committed on the test set
- **Generalization errors**: Expected error of a model over random selection of records from same distribution



02/03/2021

Example Data Set



Two class problem:

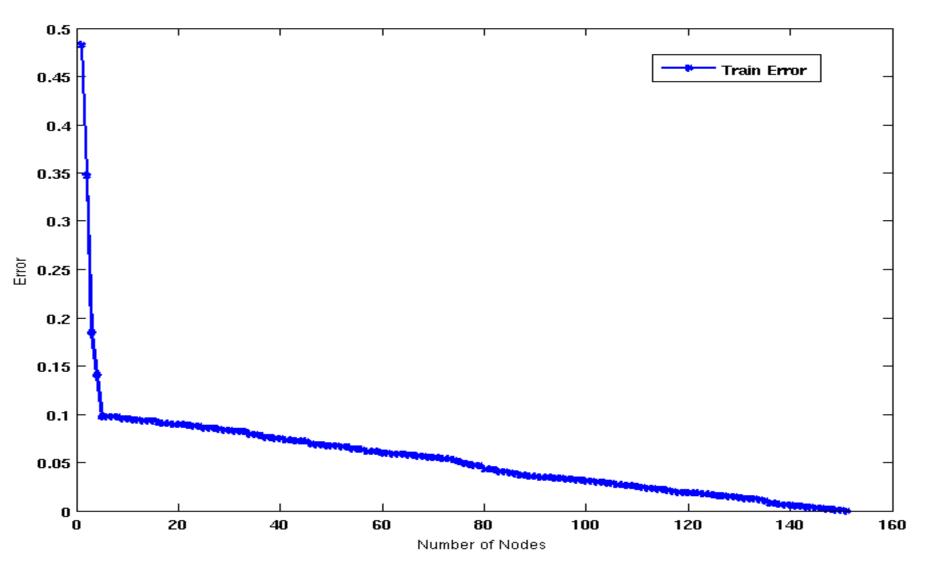
- +: 5400 instances
 - 5000 instances generated from a Gaussian centered at (10,10)
 - 400 noisy instances added

o: 5400 instances

Generated from a uniform distribution

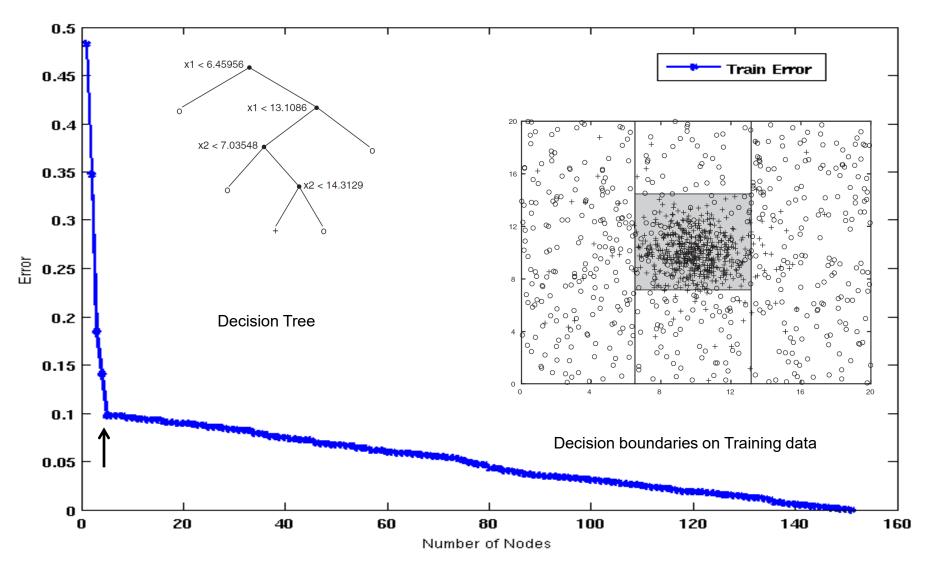
10 % of the data used for training and 90% of the data used for testing

Increasing number of nodes in Decision Trees

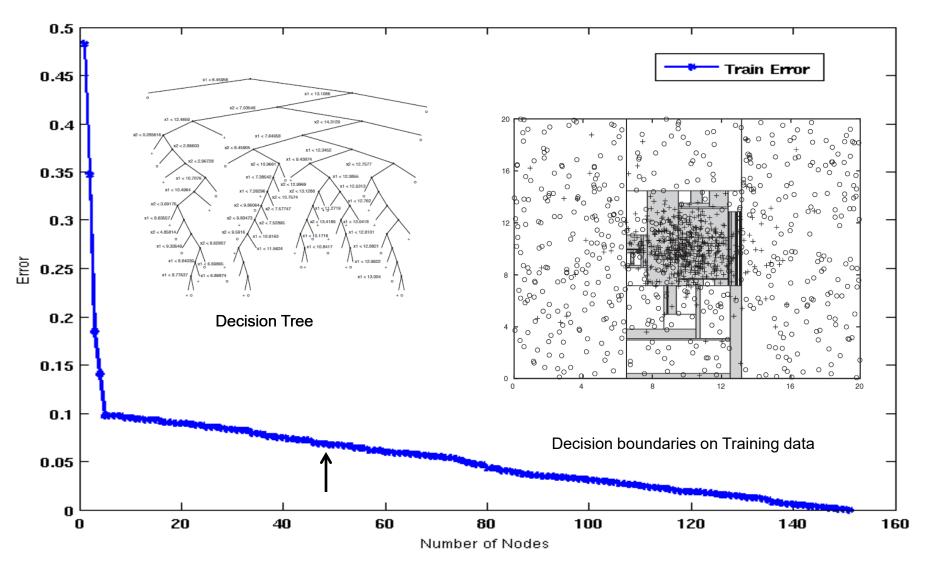


02/03/2021

Decision Tree with 4 nodes

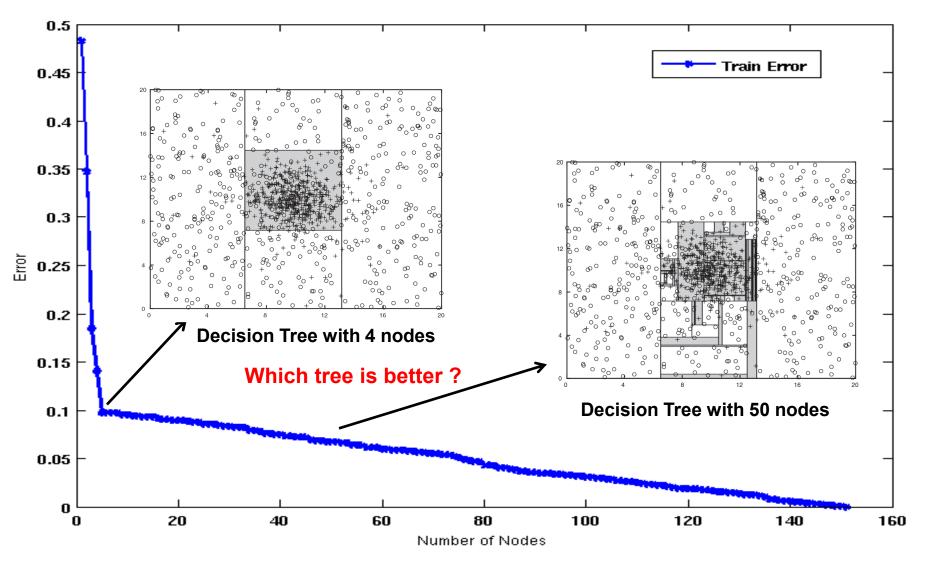


Decision Tree with 50 nodes

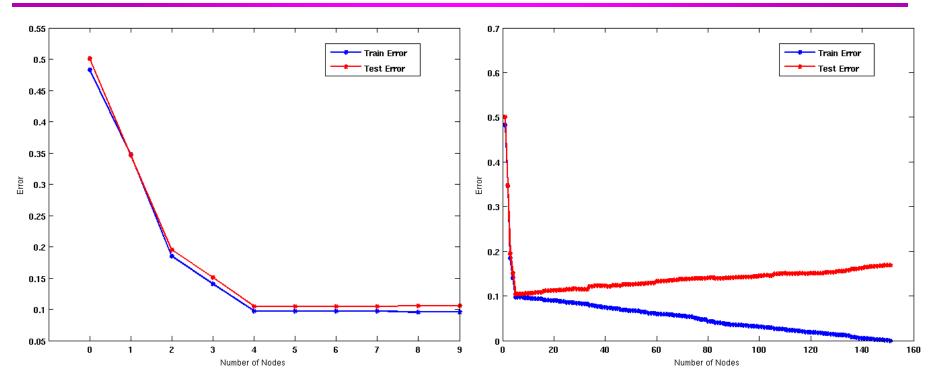


^{02/03/2021}

Which tree is better?



Model Underfitting and Overfitting

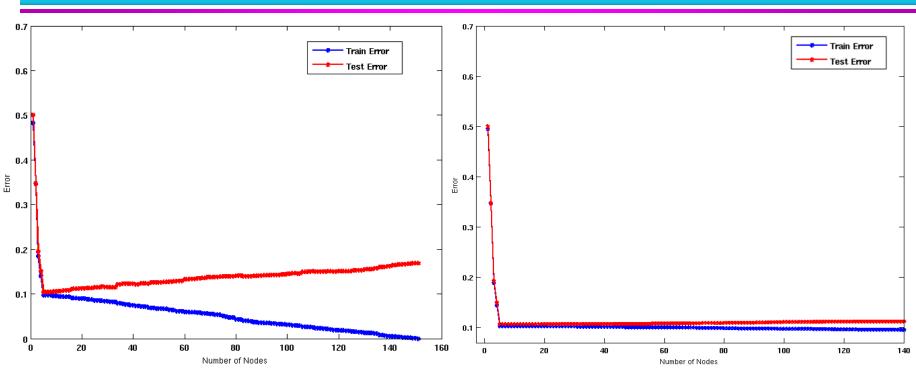


•As the model becomes more and more complex, test errors can start increasing even though training error may be decreasing

Underfitting: when model is too simple, both training and test errors are large **Overfitting**: when model is too complex, training error is small but test error is large

02/03/2021

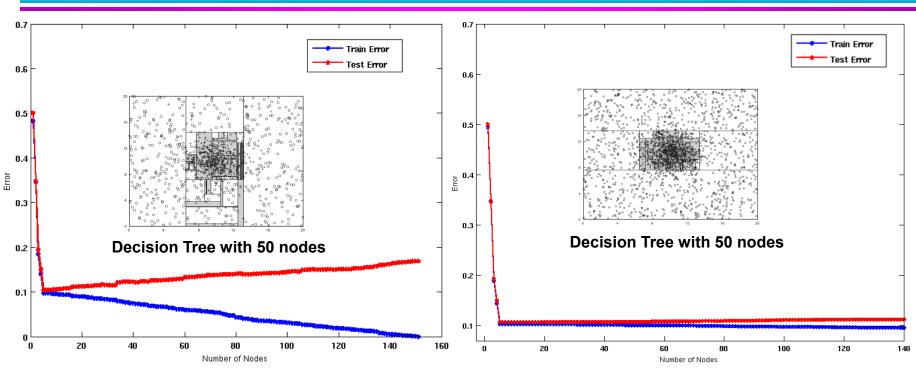
Model Overfitting – Impact of Training Data Size



Using twice the number of data instances

• Increasing the size of training data reduces the difference between training and testing errors at a given size of model

Model Overfitting – Impact of Training Data Size



Using twice the number of data instances

• Increasing the size of training data reduces the difference between training and testing errors at a given size of model

Reasons for Model Overfitting

Not enough training data

- High model complexity
 - In the case, for example, of decision trees, the deeper the tree, the smaller the number of training examples for a choice of a higher number of attributes: Multiple Comparison Procedure issue

Effect of Multiple Comparison Procedure

- Consider the task of predicting whether stock market will rise/fall in the next 10 trading days
- Random guessing:
 P(correct) = 0.5
- Make 10 random guesses in a row:

$$P(\#correct \ge 8) = \frac{\binom{10}{8} + \binom{10}{9} + \binom{10}{10}}{2^{10}} = 0.0547$$

Day 1	Up
Day 2	Down
Day 3	Down
Day 4	Up
Day 5	Down
Day 6	Down
Day 7	Up
Day 8	Up
Day 9	Up
Day 10	Down
Day 6 Day 7 Day 8 Day 9	Down Up Up Up

Effect of Multiple Comparison Procedure

- Approach:
 - Get 50 analysts
 - Each analyst makes 10 random guesses
 - Choose the analyst that makes the most number of correct predictions
- Probability that at least one analyst makes at least 8 correct predictions

$$P(\# correct \ge 8) = 1 - (1 - 0.0547)^{50} = 0.9399$$

Effect of Multiple Comparison Procedure

- Many algorithms employ the following greedy strategy:
 - Initial model: M
 - Alternative model: M' = M $\cup \gamma$, where γ is a component to be added to the model (e.g., a test condition of a decision tree)
 - Keep M' if improvement, $\Delta(M,M') > \alpha$
- Often times, γ is chosen from a set of alternative components, $\Gamma = {\gamma_1, \gamma_2, ..., \gamma_k}$
- If many alternatives are available, one may inadvertently add irrelevant components to the model, resulting in model overfitting

02/03/2021

Notes on Overfitting

- Overfitting results in decision trees that are <u>more</u> <u>complex</u> than necessary
- Training error does not provide a good estimate of how well the tree will perform on previously unseen records

Need ways for estimating generalization errors

Model Selection

- Performed during model building
- Purpose is to ensure that model is not overly complex (to avoid overfitting)
- Need to estimate generalization error
 - Using Validation Set
 - Incorporating Model Complexity

Model Selection: Using Validation Set

Divide training data into two parts:

- Training set:
 - use for model building
- Validation set:
 - use for estimating generalization error
 - Note: validation set is not the same as test set

Drawback:

Less data available for training

Model Selection:

Incorporating Model Complexity

- Rationale: Occam's Razor
 - Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
 - A complex model has a greater chance of being fitted accidentally
 - Therefore, one should include model complexity when evaluating a model

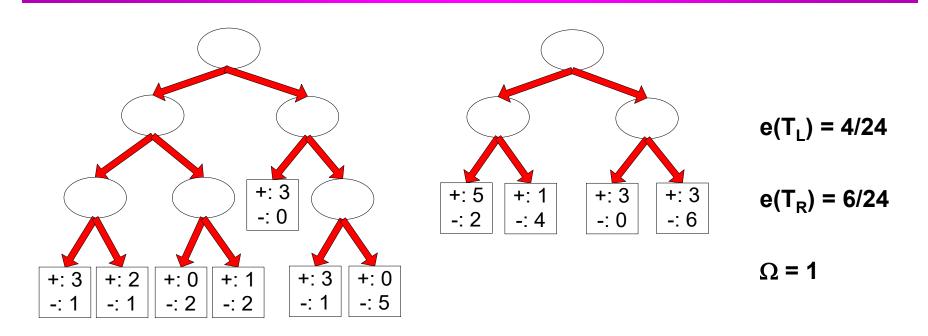
Gen. Error(Model) = Train. Error(Model, Train. Data) + $\alpha \propto Complexity(Model)$

Pessimistic Error Estimate of decision tree T with k leaf nodes:

$$err_{gen}(T) = err(T) + \Omega \times \frac{k}{N_{train}}$$

- err(T): error rate on all training records
- Ω : trade-off hyper-parameter (similar to α)
 - Relative cost of adding a leaf node
- k: number of leaf nodes
- N_{train}: total number of training records

Estimating the Complexity of Decision Trees: Example



Decision Tree, T₁

Decision Tree, T_R

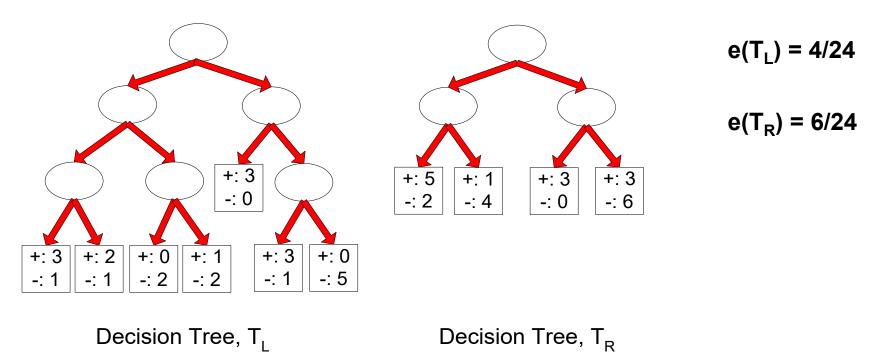
 $e_{gen}(T_L) = 4/24 + 1*7/24 = 11/24 = 0.458$

$$e_{aen}(T_R) = 6/24 + 1*4/24 = 10/24 = 0.417$$

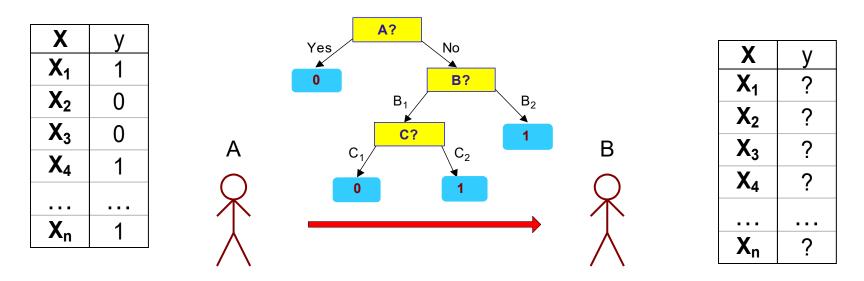
02/03/2021

Estimating the Complexity of Decision Trees

- Resubstitution Estimate:
 - Using training error as an optimistic estimate of generalization error
 - Referred to as optimistic error estimate



Minimum Description Length (MDL)



□ Cost(Model,Data) = Cost(Data|Model) + α x Cost(Model)

- Cost is the number of bits needed for encoding.
- Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

Model Selection for Decision Trees

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values result in the same class value
- More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
 - Stop if estimated generalization error falls below certain threshold

Model Selection for Decision Trees

Post-pruning

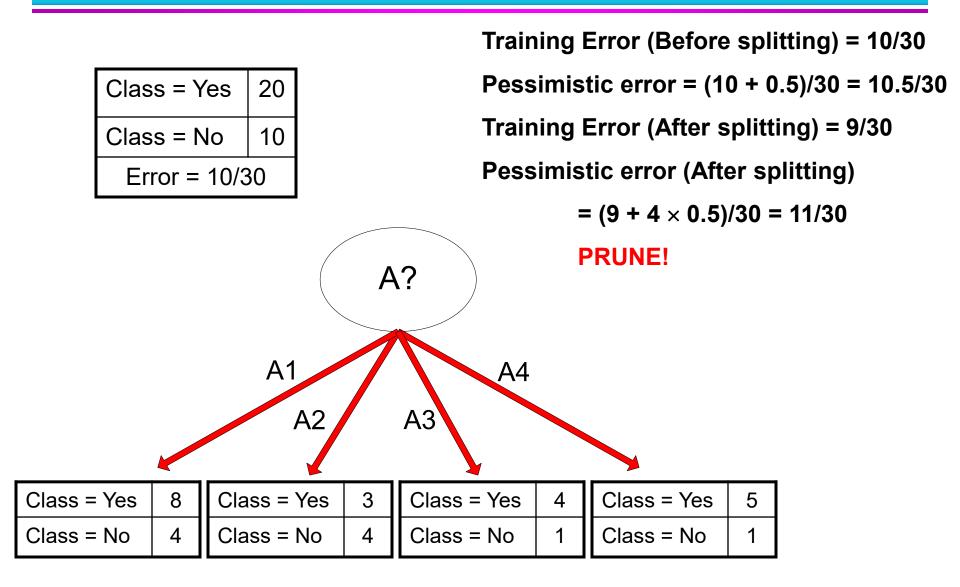
- Grow decision tree to its entirety
- Subtree replacement

Trim the nodes of the decision tree in a bottom-up fashion

 If generalization error improves after trimming, replace sub-tree by a leaf node

 Class label of leaf node is determined from majority class of instances in the sub-tree

Example of Post-Pruning

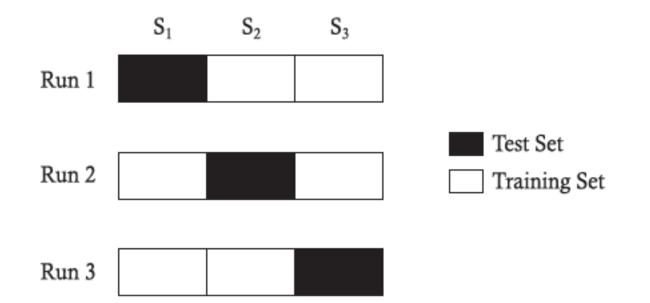


Model Evaluation

- Purpose:
 - To estimate performance of classifier on previously unseen data (test set)
- Holdout
 - Reserve k% for training and (100-k)% for testing
 - Random subsampling: repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

Cross-validation Example

3-fold cross-validation



Variations on Cross-validation

Repeated cross-validation

- Perform cross-validation a number of times
- Gives an estimate of the variance of the generalization error
- Stratified cross-validation
 - Guarantee the same percentage of class labels in training and test
 - Important when classes are imbalanced and the sample is small
- Use nested cross-validation approach for model selection and evaluation