Data Mining Classification: Basic Concepts and Techniques

Lecture Notes for Chapter 3

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Classification: Definition

- Given a collection of records (training set)
 - Each record is by characterized by a tuple (*x*,*y*), where *x* is the attribute set and *y* is the class label
 - *x*: attribute, predictor, independent variable, input *y*: class, response, dependent variable, output
 - Task:
 - Learn a model that maps each attribute set x into one of the predefined class labels y

Examples of Classification Task

Task	Attribute set, <i>x</i>	Class label, y
Categorizing email messages	Features extracted from email message header and content	spam or non-spam
Identifying tumor cells	Features extracted from x-rays or MRI scans	malignant or benign cells
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

General Approach for Building Classification Model

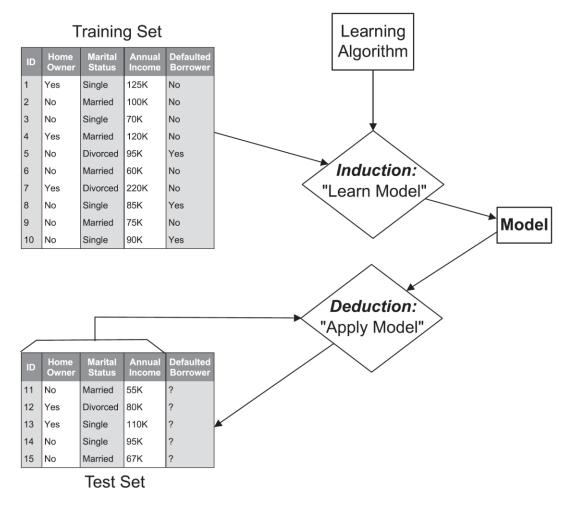


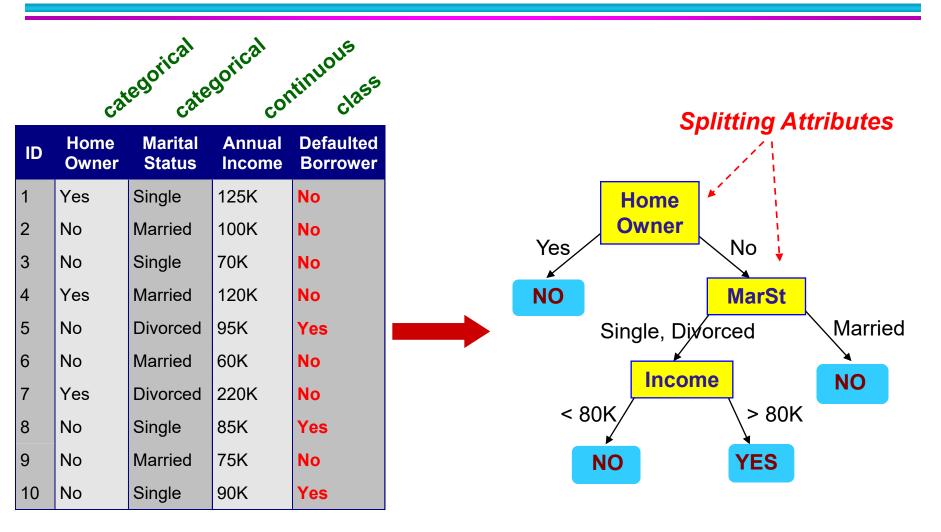
Figure 3.3. General framework for building a classification model.

Classification Techniques

Base Classifiers

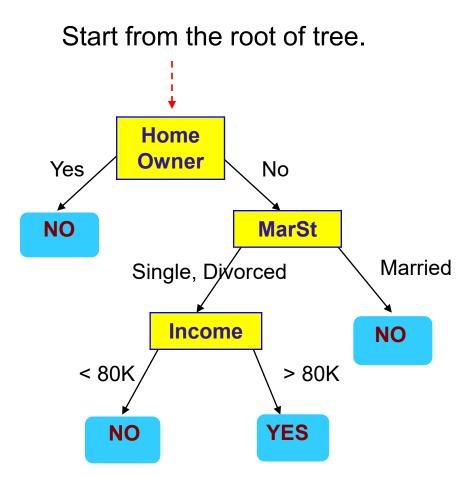
- Decision Tree based Methods
- Rule-based Methods
- Nearest-neighbor
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines
- Neural Networks, Deep Neural Nets
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

Example of a Decision Tree



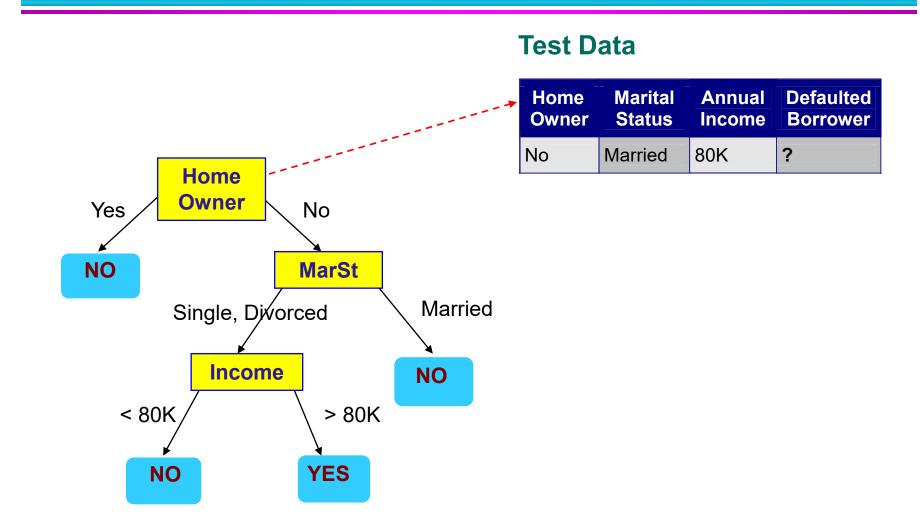
Training Data

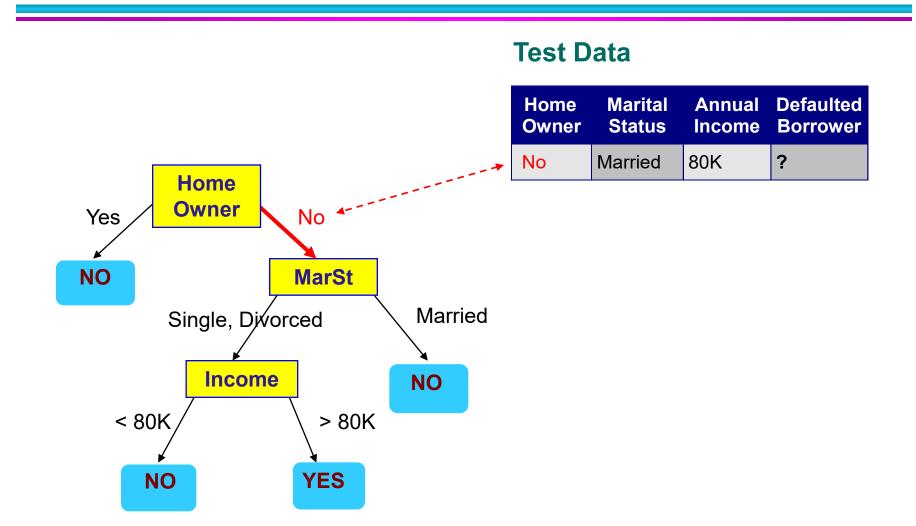
Model: Decision Tree

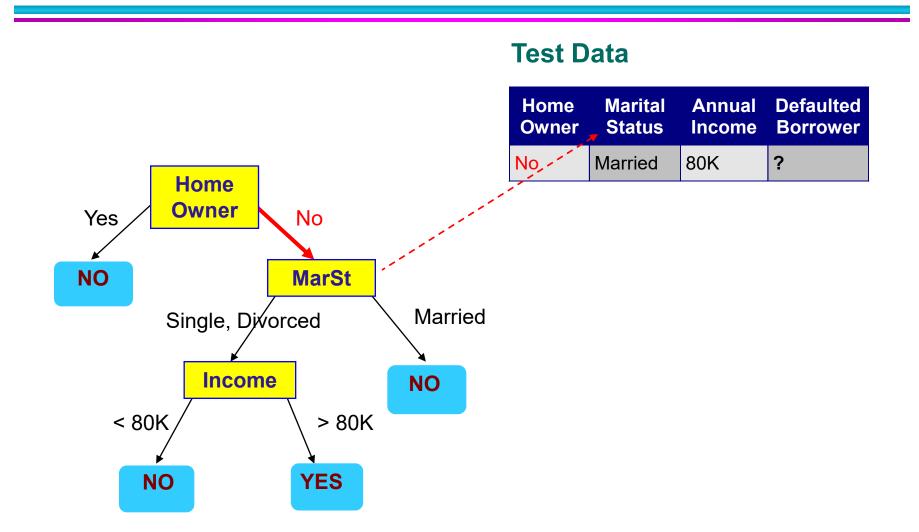


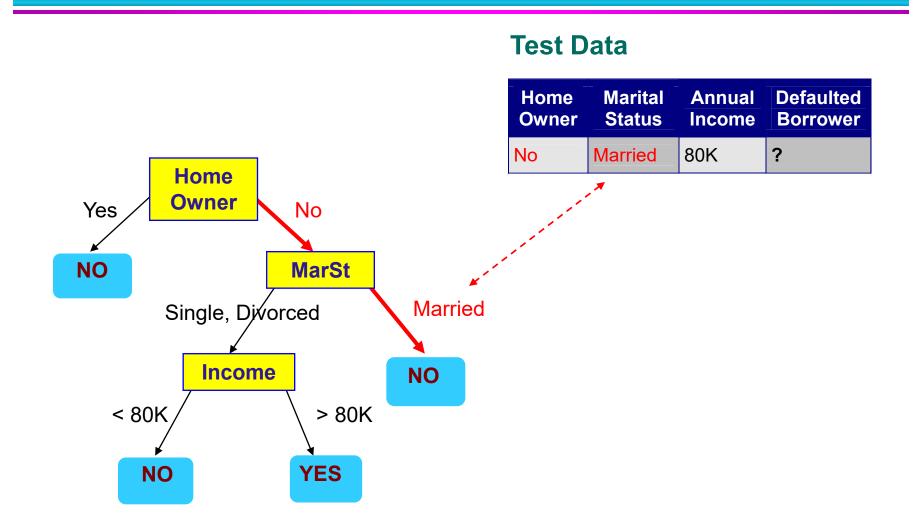
Test Data

			Defaulted Borrower
No	Married	80K	?

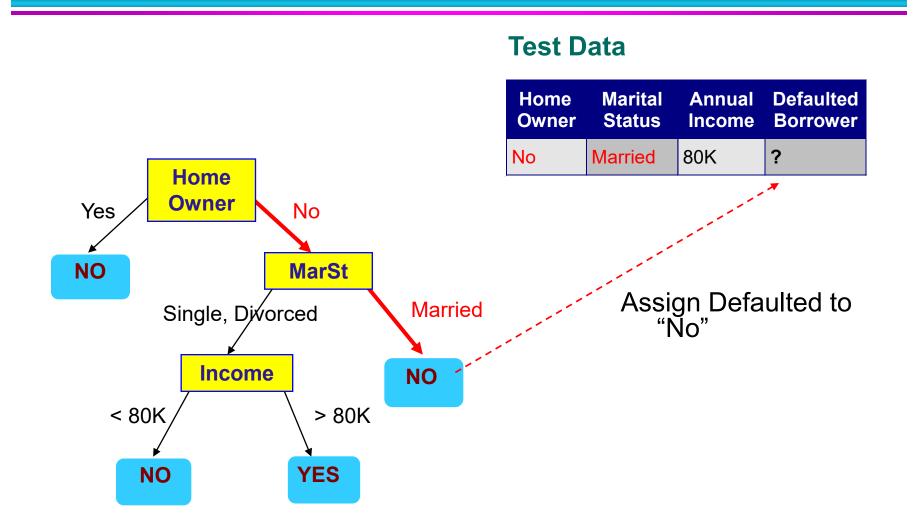




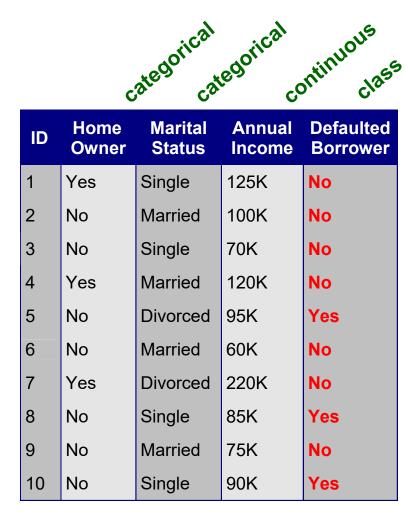


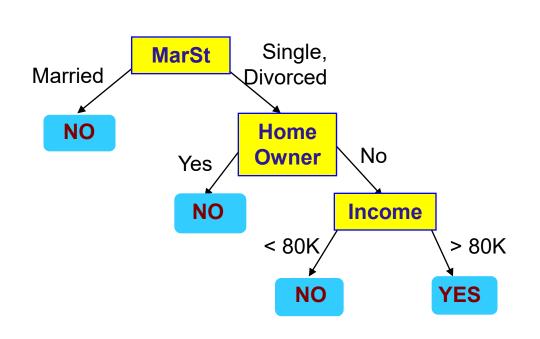


2/1/2021



Another Example of Decision Tree





There could be more than one tree that fits the same data!

Decision Tree Classification Task

1 2 3 4 5 6 7 8 9 10	Attrib1 Yes No Yes No No Yes No No No No	Attrib2 Large Medium Small Medium Large Small Medium Small	Attrib3 125K 100K 70K 120K 95K 60K 220K 85K 75K 90K	Class No No No Yes No Yes No Yes
	Ira	ining S	et	
Tid	Attrib1	Attrib2	Attrib3	Class
Tid 11	Attrib1 No	Attrib2 Small	Attrib3 55K	Class ?
11	No	Small	55K	?
11 12	No Yes	Small Medium	55K 80K	? ?

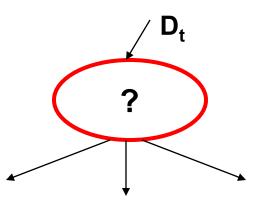
Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

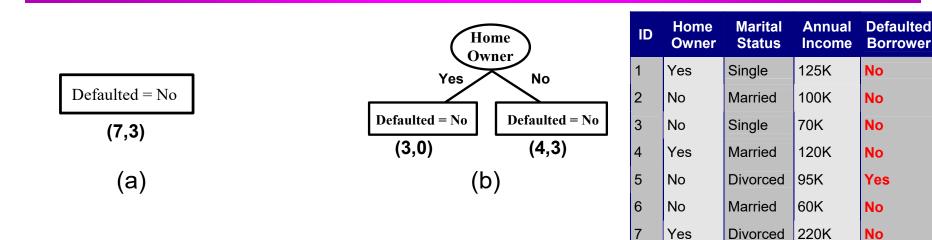


ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No

(7,3)

(a)



8

9

10

No

No

No

85K

75K

90K

Single

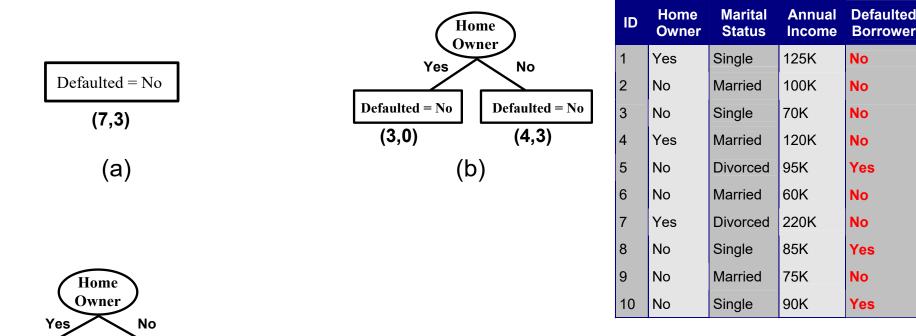
Married

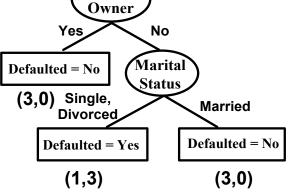
Single

Yes

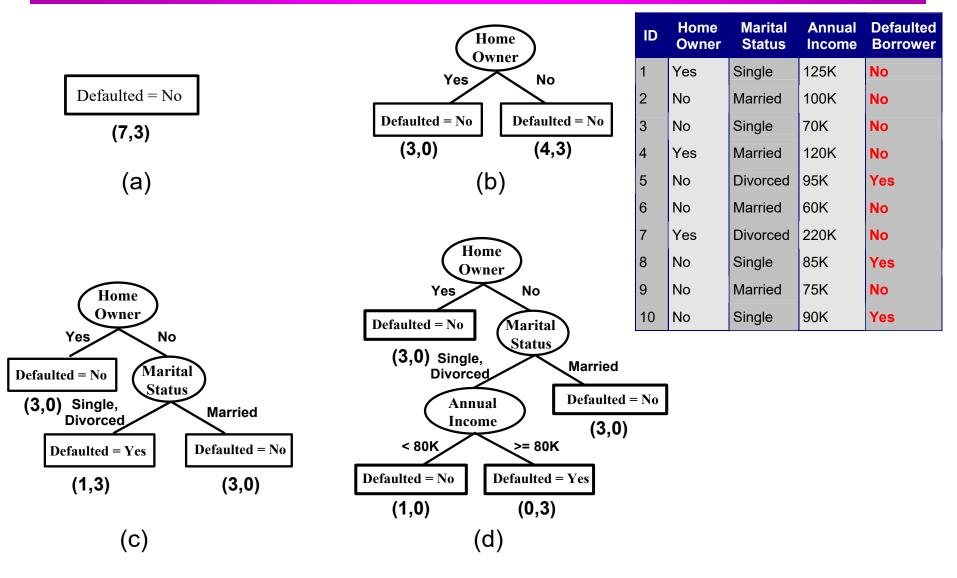
No

Yes





(c)



Introduction to Data Mining, 2nd Edition

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for expressing test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition
 - How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

Methods for Expressing Test Conditions

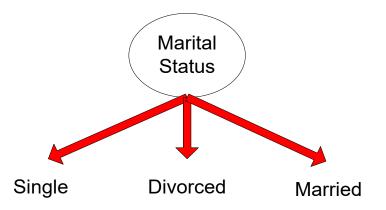
Depends on attribute types

- Binary
- Nominal
- Ordinal
- Continuous

Test Condition for Nominal Attributes

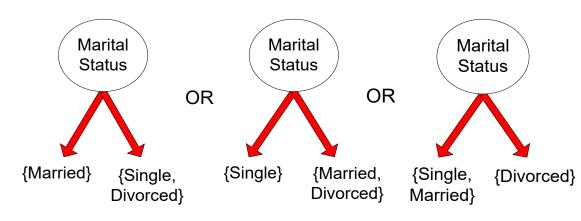
Multi-way split:

 Use as many partitions as distinct values.



Binary split:

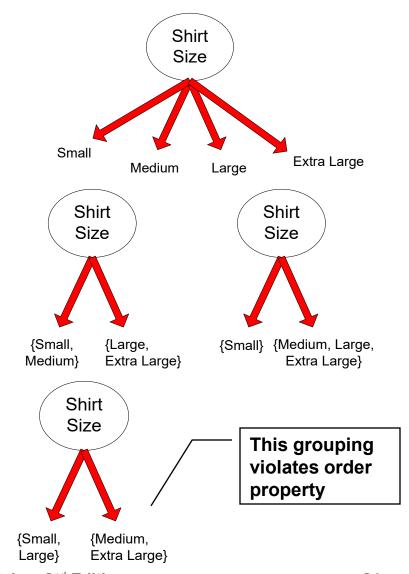
Divides values into two subsets



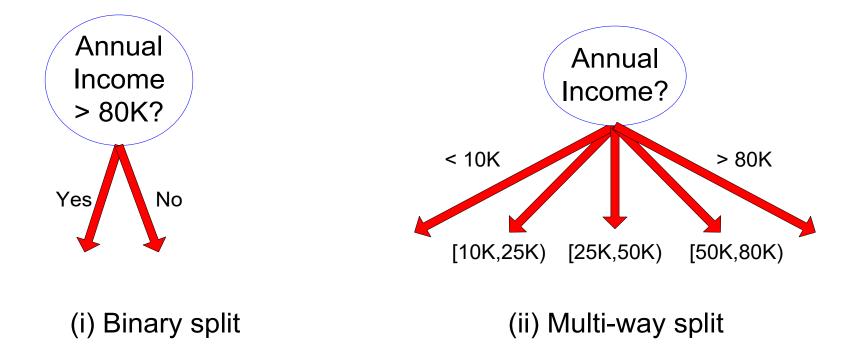
Test Condition for Ordinal Attributes

Multi-way split:

- Use as many partitions as distinct values
- Binary split:
 - Divides values into two subsets
 - Preserve order
 property among
 attribute values



Test Condition for Continuous Attributes



Splitting Based on Continuous Attributes

Different ways of handling

 Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- Static discretize once at the beginning
- Dynamic repeat at each node
- Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

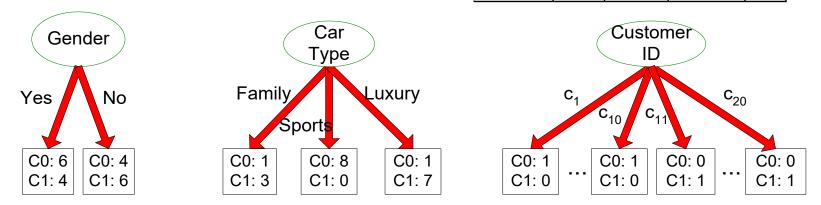
2/1/2021

Introduction to Data Mining, 2nd Edition

How to determine the Best Split

Customer Id	Gender	Car Type	Shirt Size	Class
1	М	Family	Small	CO
2	М	Sports	Medium	CO
3	М	Sports	Medium	CO
4	М	Sports	Large	CO
5	М	Sports	Extra Large	CO
6	Μ	Sports	Extra Large	C0
7	\mathbf{F}	Sports	Small	CO
8	\mathbf{F}	Sports	Small	CO
9	\mathbf{F}	Sports	Medium	CO
10	\mathbf{F}	Luxury	Large	CO
11	Μ	Family	Large	C1
12	Μ	Family	Extra Large	C1
13	Μ	Family	Medium	C1
14	Μ	Luxury	Extra Large	C1
15	\mathbf{F}	Luxury	Small	C1
16	\mathbf{F}	Luxury	Small	C1
17	\mathbf{F}	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	\mathbf{F}	Luxury	Medium	C1
20	\mathbf{F}	Luxury	Large	C1

Before Splitting: 10 records of class 0, 10 records of class 1



Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 9 C1: 1

High degree of impurity

Low degree of impurity

Measures of Node Impurity

Gini Index Gini Index = $1 - \sum_{i=1}^{n} p_i(t)^2$ Where $p_i(t)$ is the frequency of class *i* at node **t**, and *c* is the total number of classes

Where $p_i(t)$ is the frequency the total number of classes

Entropy

$$Entropy = -\sum_{i=0}^{c-1} p_i(t) \log_2 p_i(t)$$

Misclassification error

Classification error = $1 - \max[p_i(t)]$

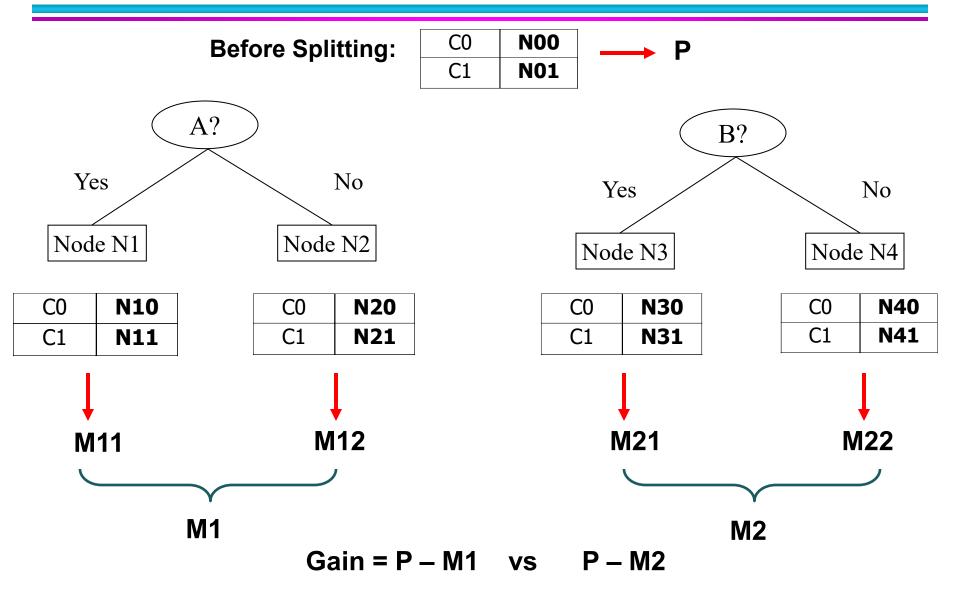
Finding the Best Split

- 1. Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 I Compute impurity measure of each child node
 I M is the weighted impurity of child nodes
- 3. Choose the attribute test condition that produces the highest gain

Gain = P - M

or equivalently, lowest impurity measure after splitting (M)

Finding the Best Split



Introduction to Data Mining, 2nd Edition

Measure of Impurity: GINI

Gini Index for a given node *t*

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

Where $p_i(t)$ is the frequency of class *i* at node *t*, and *c* is the total number of classes

- Maximum of 1 1/c when records are equally distributed among all classes, implying the least beneficial situation for classification
- Minimum of 0 when all records belong to one class, implying the most beneficial situation for classification
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

Measure of Impurity: GINI

Gini Index for a given node t :

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

For 2-class problem (p, 1 − p):
 GINI = 1 − p² − (1 − p)² = 2p (1-p)

C1	0	C1	1	C1	2	C1	3
C2	6	C2	5	C2	4	C2	3
Gini=	0.000	Gini=0.278		Gini=	0.444	Gini=	0.500

Computing Gini Index of a Single Node

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Gini = 1 - $P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Gini = 1 - (1/6)² - (5/6)² = 0.278

C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6Gini = 1 - (2/6)² - (4/6)² = 0.444

Introduction to Data Mining, 2nd Edition

Computing Gini Index for a Collection of Nodes

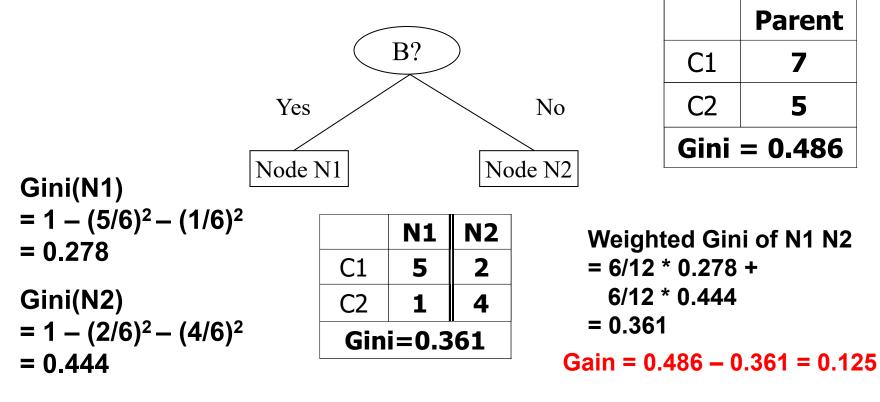
When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child *i*, n = number of records at parent node *p*.

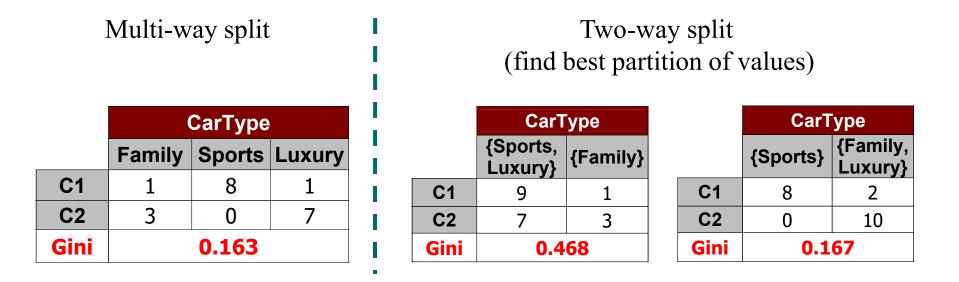
Binary Attributes: Computing GINI Index

- Splits into two partitions (child nodes)
- Effect of Weighing partitions:
 - Larger and purer partitions are sought



Categorical Attributes: Computing Gini Index

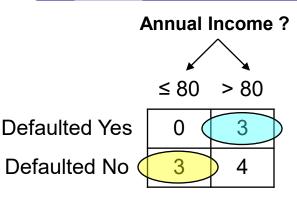
- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions



Which of these is the best?

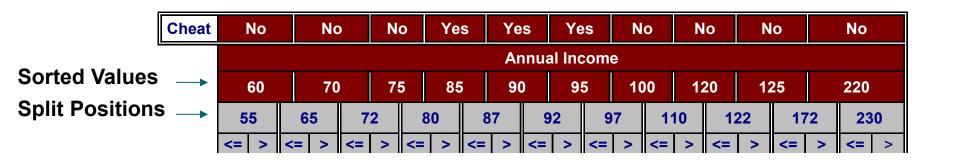
- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A ≤ v and A > v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

ID	Home Owner	Marital Status	Annual Income	Defaulted
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

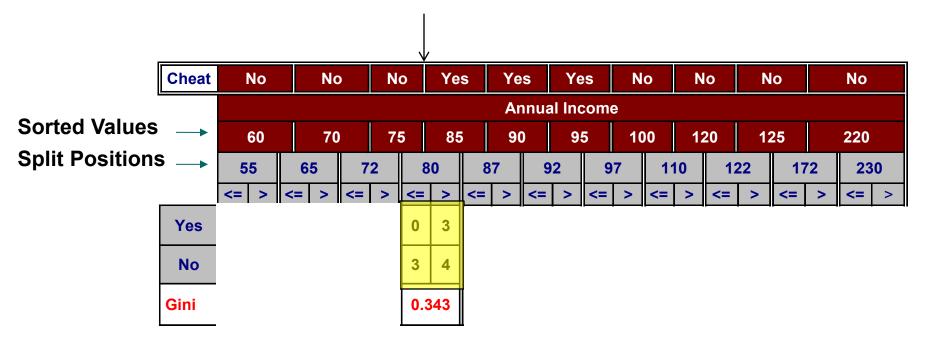


- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

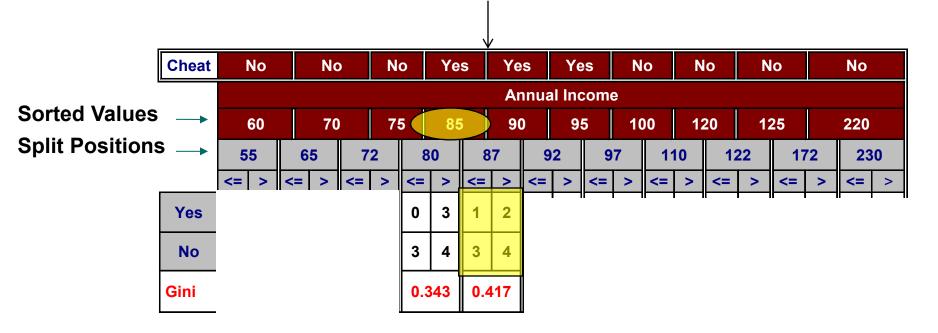
- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index



- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		No		Nc)	N	0	Ye	S	Ye	S	Ye	es	N	0	N	0	N	0		No	
		Annual Income																					
Sorted Values			60		70)	7	5	85	5	9()	9	5	10	00	12	20	12	25		220	
Split Positions	S →	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	22	17	72	23	0
		<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>		>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	20	0.4	00	0.3	575	0.3	343	0.4	17	0.4	100	<u>0.3</u>	<u>800</u>	0.3	43	0.3	575	0.4	100	0.4	20

Measure of Impurity: Entropy

Entropy at a given node t

$$Entropy = -\sum_{i=0}^{c-1} p_i(t) log_2 p_i(t)$$

Where $p_i(t)$ is the frequency of class *i* at node *t*, and *c* is the total number of classes

- Maximum of log₂c when records are equally distributed among all classes, implying the least beneficial situation for classification
- Minimum of 0 when all records belong to one class, implying most beneficial situation for classification
- Entropy based computations are quite similar to the GINI index computations

Computing Entropy of a Single Node

$$Entropy = -\sum_{i=0}^{c-1} p_i(t) log_2 p_i(t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = - 0 log 0 - 1 log 1 = - 0 - 0 = 0

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Entropy = - (1/6) $\log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6 Entropy = $-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92$

Computing Information Gain After Splitting

Information Gain:

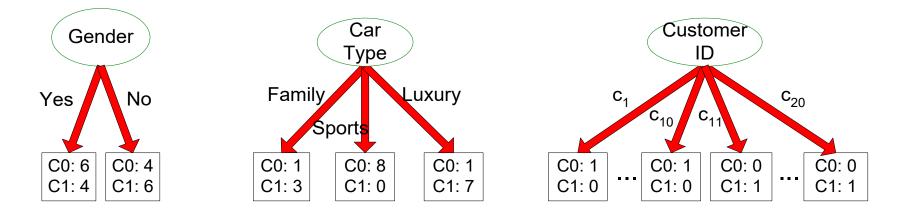
$$Gain_{split} = Entropy(p) - \sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)$$

Parent Node, p is split into k partitions (children) n_i is number of records in child node i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms
- Information gain is the mutual information between the class variable and the splitting variable

Problem with large number of partitions

Node impurity measures tend to prefer splits that result in large number of partitions, each being small but pure



 Customer ID has highest information gain because entropy for all the children is zero

Gain Ratio

Gain Ratio:

$$Gain Ratio = \frac{Gain_{split}}{Split Info} \qquad Split Info = -\sum_{i=1}^{k} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Parent Node, p is split into k partitions (children)

 n_i is number of records in child node i

- Adjusts Information Gain by the entropy of the partitioning (*Split Info*).
 - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

Gain Ratio

Gain Ratio:

$$Gain Ratio = \frac{Gain_{split}}{Split Info} \qquad Split Info = \sum_{i=1}^{k} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Parent Node, p is split into k partitions (children) n_i is number of records in child node i

	CarType						
	Family Sports Luxury						
C1	1	8	1				
C2	3	0	7				
Gini	0.163						

SplitINFO = 1.52

	CarType					
	{Sports, Luxury}	{Family}				
C1	9	1				
C2	7	3				
Gini	0.468					

SplitINFO = 0.72

	CarType				
	{Sports}	{Family, Luxury}			
C1	8	2			
C2	0	10			
Gini	0.167				

SplitINFO = 0.97

Classification error at a node t

 $Error(t) = 1 - \max_{i}[p_i(t)]$

- Maximum of 1 1/c when records are equally distributed among all classes, implying the least interesting situation
- Minimum of 0 when all records belong to one class, implying the most interesting situation

Computing Error of a Single Node

$$Error(t) = 1 - \max_{i}[p_i(t)]$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Error = 1 - max (0, 1) = 1 - 1 = 0

C1	1
C2	5

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
Error = 1 - max (1/6, 5/6) = 1 - 5/6 = 1/6

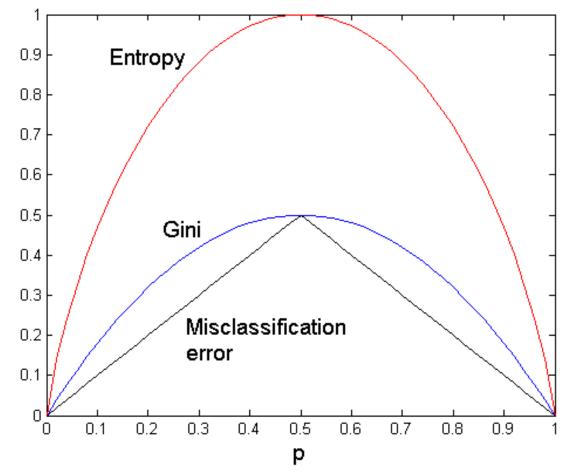
C1	2
C2	4

P(C1) = 2/6 P(C2) = 4/6Error = 1 - max (2/6, 4/6) = 1 - 4/6 = 1/3

Introduction to Data Mining, 2nd Edition

Comparison among Impurity Measures

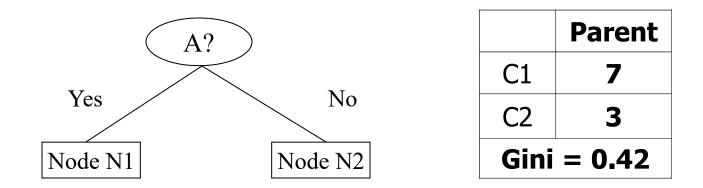
For a 2-class problem:



2/1/2021

Introduction to Data Mining, 2nd Edition

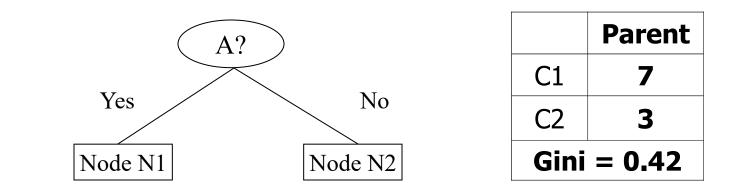
Misclassification Error vs Gini Index



Gini(N1) **N2 N1 Gini(Children)** $= 1 - (3/3)^2 - (0/3)^2$ C1 3 4 = 3/10 * 0= 0 C2 3 0 +7/10 * 0.489Gini(N2) = 0.342Gini=0.342 $= 1 - (4/7)^2 - (3/7)^2$ = 0.489

Gini improves but error remains the same!!

Misclassification Error vs Gini Index



	N1	N2		N1	N2
C1	3	4	C1	3	4
C2	0	3	C2	1	2
Gin	i=0.3	842	Gin	16	

Misclassification error for all three cases = 0.3 !

Decision Tree Based Classification

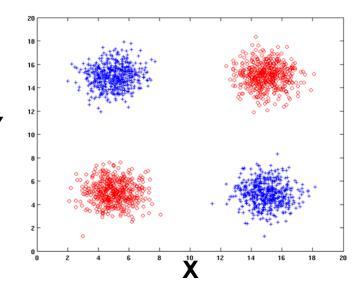
Advantages:

- Relatively inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Robust to noise (especially when methods to avoid overfitting are employed)
- Can easily handle redundant attributes
- Can easily handle irrelevant attributes (unless the attributes are interacting)

Disadvantages: .

- Due to the greedy nature of splitting criterion, interacting attributes (that can distinguish between classes together but not individually) may be passed over in favor of other attributed that are less discriminating.
- Each decision boundary involves only a single attribute

Handling interactions



- +: 1000 instances
- Entropy (X) : 0.99 Entropy (Y) : 0.99
- o: 1000 instances

Handling interactions

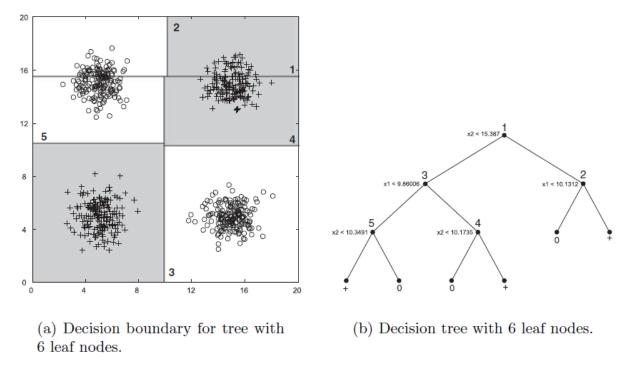
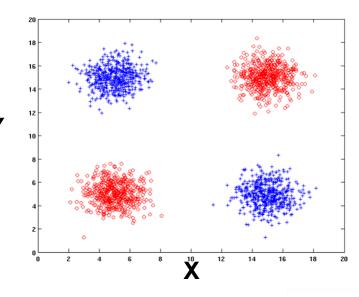


Figure 3.28. Decision tree with 6 leaf nodes using X and Y as attributes. Splits have been numbered from 1 to 5 in order of other occurrence in the tree.

Handling interactions given irrelevant attributes



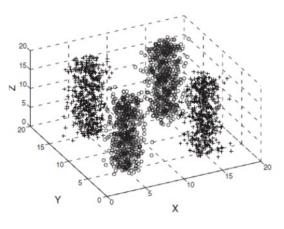
- +: 1000 instances
- o: 1000 instances

Adding Z as a noisy attribute generated from a uniform distribution

٦

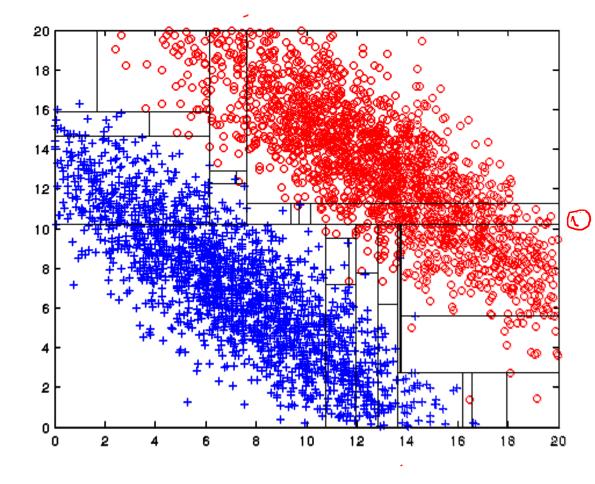
Entropy (X) : 0.99 Entropy (Y) : 0.99 Entropy (Z) : 0.98

Attribute Z will be chosen for splitting!



(a) Three-dimensional data with attributes X, Y, and Z.

Limitations of single attribute-based decision boundaries



Both positive (+) and negative (o) classes generated from skewed Gaussians with centers at (8,8) and (12,12) respectively.