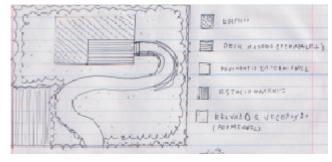
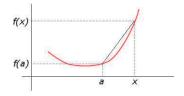
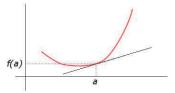
VI - Derivação e integração

Qual a percentagem de área permeável?



(Imagem de Vicente Braga da Cruz (AP - M1029 - 2023-2024))





- ▶ $\frac{f(x)-f(a)}{x-a}$ é o declive da recta que passa pelos pontos de abcissa $a \in x$ do gráfico de f.
- ► f é derivável em a se, quando x tende para a, essa recta tender para uma recta (não vertical).
- Essa recta, se existir, chama-se recta tangente ao gráfico de f no ponto (a, f(a))

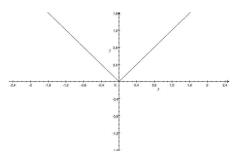
Definição de função derivável e recta tangente ao gráfico

- ▶ Diz-se que f é derivável em a sse existe $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ (e esse limite é finito).
- ▶ Chama-se derivada de f em a a $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ (notação: f'(a))
- Diz-se que uma função é derivável sse é derivável em todos os pontos do seu domínio.

Definição de função derivável e recta tangente ao gráfico

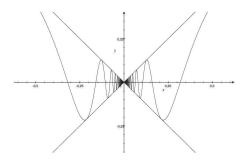
- ▶ f'(a) é o declive da recta tangente ao gráfico de f em (a, f(a)).
- Uma equação da recta tangente ao gráfico de f em (a, f(a)) é y = f(a) + f'(a)(x a).

A função $f:\mathbb{R} \to \mathbb{R}$ definida por f(x)=|x| não tem derivada no ponto 0

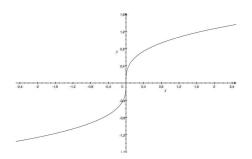


$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = 1 \text{ e } \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = -1$$

A função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \begin{cases} x \operatorname{sen}(\frac{1}{x}), & \operatorname{se} x \neq 0 \\ 0, & \operatorname{se} x = 0 \end{cases}$ não tem derivada no ponto 0

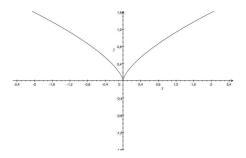


A função $f:\mathbb{R}\to\mathbb{R}$ definida por $f(x)=\sqrt[3]{x}$ tem derivada $+\infty$ em x=0



$$\lim_{x \to 0^+} \frac{\sqrt[3]{x}}{x} = \lim_{x \to 0^+} \sqrt[3]{\frac{x}{x^3}} = \lim_{x \to 0^+} \sqrt[3]{\frac{1}{x^2}} = +\infty \text{ e } \lim_{x \to 0^-} \frac{\sqrt[3]{x}}{x} = +\infty$$

A função $f:\mathbb{R} \to \mathbb{R}$ definida por $f(x)=\sqrt[3]{x^2}$ não tem derivada em x=0



$$\lim_{x \to 0^+} \frac{\sqrt[3]{x^2}}{x} = \lim_{x \to 0^+} \sqrt[3]{\frac{x^2}{x^3}} = \lim_{x \to 0^+} \frac{1}{\sqrt[3]{x}} = +\infty \text{ e } \lim_{x \to 0^-} \frac{\sqrt[3]{x^2}}{x} = -\infty$$

Seja
$$f \colon \mathbb{R} \longrightarrow \mathbb{R}$$
 . $x \mapsto x^2$

- $f'(3) = \lim_{x \to 3} \frac{x^2 3^2}{x 3} = \lim_{x \to 3} x + 3 = 6$
- $f'(a) = \lim_{x \to a} \frac{x^2 a^2}{x a} = \lim_{x \to a} x + a = 2a$
- Uma equação da recta tangente ao gráfico de f em (3,9) é y = 9 + 6(x 3).
- Uma equação da recta tangente ao gráfico de f em (a, a^2) é $y = a^2 + 2a(x a)$.

Proposição: Se f é derivável em a, ponto do interior do dominio de f, então f é continua em a.

Nota: Uma função pode ser continua num ponto e não ter derivada nesse ponto (ver exemplo anterior).

Proposição: Se f e g são funções deriváveis em a, então f+g e $f\cdot g$ são funções deriváveis em a e

$$(f+g)'(a) = f'(a) + g'(a)$$

 $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$

Se $g(a) \neq 0$ então f/g é derivável em a e

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{(g(a))^2}.$$

- Para qualquer $c \in \mathbb{R}$, a função constante $x \mapsto c$ é derivável e a sua derivada é a função nula.
- Se f é uma função derivável, então, para qualquer $c \in \mathbb{R}$, a função $x \mapsto cf(x)$ é derivável, e (cf)'(x)=cf'(x).
- ▶ Para $a \in \mathbb{R}$, a função $x \mapsto x^a$ é derivável e a sua derivada é $x \mapsto ax^{a-1}$.
- A função exponencia $x \mapsto e^x$ é derivável e $(e^x)' = e^x$.
- A função seno é derivável e sen' $x = \cos x$.
- A função cosseno é derivável e $\cos' x = -\sin x$.
- A função tangente é derivável e $tg'x = \frac{1}{\cos^2 x}$.

Proposição: Se f é derivável em a e g é derivável em f(a), então $g \circ f$ é derivável em a e $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$.

$$f(x) = x^{5} \qquad f'(x) = 5x^{4}$$

$$f(x) = \sqrt[4]{x}(=x^{\frac{1}{4}}) \qquad f'(x) = \frac{1}{4}x^{-\frac{3}{4}}(=\frac{1}{4\sqrt[4]{x^{3}}})$$

$$f(x) = \frac{1}{x^{3}}(=x^{-3}) \qquad f'(x) = -3x^{-4}(=-\frac{3}{x^{4}})$$

$$f(x) = 3x^{6} \qquad f'(x) = 3 \times 6x^{5} = 18x^{5}$$

$$f(x) = 5x^{2} - \frac{7}{x} + 8 \qquad f'(x) = 10x + \frac{7}{x^{2}}$$

$$f(x) = (3x + 5)(2x + 1) \qquad f'(x) = 3(2x + 1) + 2(3x + 5)$$

$$f(x) = \frac{2x + 3}{5x - 7} \qquad f'(x) = \frac{2(5x - 7) - 5(2x + 3)}{(5x - 7)^{2}}$$

$$f(x) = x^{2} \operatorname{sen} x \qquad f'(x) = 2x \operatorname{sen} x + x^{2} \operatorname{cos} x$$

$$f(x) = \frac{e^{x}}{x^{2}} \qquad f'(x) = \frac{x^{2}e^{x} - 2xe^{x}}{x^{4}} = e^{x} \left(\frac{1}{x^{2}} - \frac{2}{x^{3}}\right)$$

$$f(x) = e^{x} \sqrt{x} \operatorname{cos} x \qquad f'(x) = e^{x} \sqrt{x} \operatorname{cos} x + \frac{e^{x}}{2\sqrt{x}} \operatorname{cos} x$$

$$-e^{x} \sqrt{x} \operatorname{sen} x$$

$$f(x) = \frac{\log x}{\sqrt{x}} \qquad f'(x) = \frac{\sqrt[4]{x}}{x} + \frac{\log x}{2x^{2}} = \frac{2\sqrt{x} - \sqrt{x} \log x}{2x^{2}}$$

- ► $h(x) = (x+3)^5$; $h = g \circ f$, onde $g(x) = x^5$ e f(x) = x+3. $h'(x) = 5(x+3)^4$
- ► $h(x) = \cos(2x^2 + 3x)$; $h = g \circ f$, onde $g(x) = \cos x$ e $f(x) = 2x^2 + 3x$. $h'(x) = -(4x + 3) \sin(2x^2 + 3x)$
- $h(x) = e^{\sqrt{x}}; h = g \circ f, \text{ onde } g(x) = e^x \text{ e } f(x) = \sqrt{x}.$ $h'(x) = \frac{1}{2\sqrt{x}}e^{\sqrt{x}}$
- ► $h(x) = \log(x^2 \operatorname{sen} x)$; $h = g \circ f$, onde $g(x) = \log x$ e $f(x) = x^2 \operatorname{sen} x$. $h'(x) = \frac{2x \operatorname{sen} x + x^2 \cos x}{x^2 \operatorname{sen} x}$
- ► $h(x) = \text{sen}^3 x$; $h = g \circ f$, onde $g(x) = x^3$ e f(x) = sen x. $h'(x) = 3 \text{ sen}^2 x \cos x$

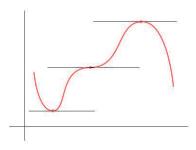
Seja $f\colon \ \mathbb{R}\setminus\{0\} \ \longrightarrow \ \mathbb{R}$. Determinar os pontos onde as rectas $x \mapsto \frac{1}{x}$

tangentes ao gráfico de f são paralelas à recta de equação 4x + y = 7 e determinar equações dessas rectas tangentes.

- ▶ O declive da recta dada é −4.
- Duas rectas são paralelas sse têm o mesmo declive.
- $f'(a) = -4 \Leftrightarrow -\frac{1}{a^2} = -4 \Leftrightarrow a = \frac{1}{2} \text{ ou } a = -\frac{1}{2}$
- ▶ Então os pontos onde as rectas tangentes ao gráfico de f são paralelas à recta de equação 4x + y = 7 são os pontos de abcissa $\frac{1}{2}$ e $-\frac{1}{2}$, isto é, $(\frac{1}{2}, 2)$ e $(-\frac{1}{2}, -2)$.
- Equações das rectas tangentes nesses pontos são $y = 2 4(x \frac{1}{2})$ e $y = -2 4(x + \frac{1}{2})$.

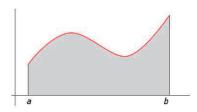
Derivadas: resultados importantes

- Se $f:]a,b[\longrightarrow \mathbb{R}$ tem um máximo ou um mínimo local em x_0 e f é derivável em x_0 , então $f'(x_0)=0$.
- Mas: pode acontecer $f'(x_0) = 0$ sem que f tenha um máximo nem um mínimo local em x_0 .



O integral definido. Objectivo

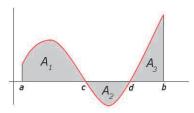
Objectivo: definir e calcular a área da região limitada pelo gráfico de uma função limitada e continua num intervalo, como na figura.



- Partimos da área de um rectângulo e tentamos aproximar aquela região por rectângulos.
- ightharpoonup Começamos pelo caso em que f é positiva.
- Notação: $\int_a^b f$ ou $\int_a^b f(x) dx$

Caso em que a função não é positiva

► Se f não é sempre positiva:

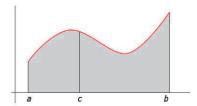


- ▶ No caso da figura, $A_1 + A_2 + A_3 = \int_a^c f \int_c^d f + \int_d^b f$.

Integrais definidos: propriedades

Seja f uma função integrável em [a, b].

- ightharpoonup f é integrável em qualquer intervalo fechado contido em [a, b].
- ▶ Para qualquer $c \in [a, b]$, tem-se $\int_{c}^{c} f(x) dx = 0$
- Para qualquer $c \in [a, b]$, tem-se $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$.



▶ Para qualquer $c \in \mathbb{R}$, tem-se $\int_a^b cf(x)dx = c \int_a^b f(x)dx$.

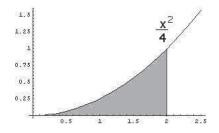
Integrais definidos: propriedades

Sejam f, g funções integráveis em [a, b].

Teorema Fundamental do Cálculo

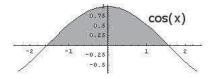
Se
$$f:[a,b] \longrightarrow \mathbb{R}$$
 é contínua e $F:[a,b] \longrightarrow \mathbb{R}$ é tal que $F'=f$, então
$$\int_a^b f = F(b) - F(a)$$

Cálculo da área a cinzento (A)

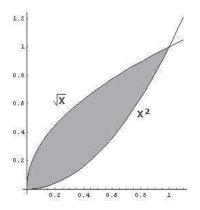


Uma vez que $(\frac{x^3}{12})' = \frac{x^2}{4}$,

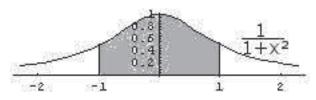
$$A = \int_0^2 \frac{x^2}{4} dx = \left[\frac{x^3}{12} \right]_{x=0}^{x=2} = \frac{8}{12} - 0 = \frac{2}{3}$$



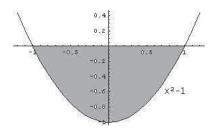
$$A = \int_{-\pi/2}^{\pi/2} \cos x \, dx = [\sin x]_{x=-\pi/2}^{x=\pi/2} = 2$$



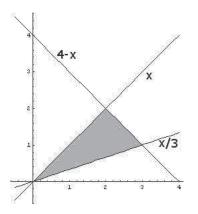
$$A = \int_0^1 \sqrt{x} \, dx - \int_0^1 x^2 \, dx = \int_0^1 \sqrt{x} - x^2 \, dx = \left[\frac{2}{3} x^{\frac{3}{2}} - \frac{x^3}{3} \right]_{x=0}^{x=1}$$
$$= \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$$



$$A = \int_{-1}^{1} \frac{1}{1+x^2} dx = \left[\operatorname{arctg} x \right]_{x=-1}^{x=1} = \operatorname{arctg} 1 - \operatorname{arctg} (-1)$$
$$= \pi/4 - \left(-\pi/4 \right) = \pi/2$$

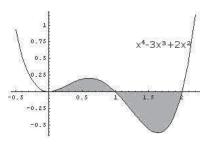


$$A = -\int_{-1}^{1} x^{2} - 1 dx = -\left[\frac{x^{3}}{3} - x\right]_{x=-1}^{x=1} = -\left(\frac{1}{3} - 1 - \left(-\frac{1}{3} - \left(-1\right)\right)\right)$$
$$= \frac{4}{3}$$



$$A = \int_0^2 x \, dx - \int_0^2 \frac{x}{3} \, dx + \int_2^3 4 - x \, dx - \int_2^3 \frac{x}{3} \, dx$$

= $\int_0^2 x - \frac{x}{3} \, dx + \int_2^3 4 - x - \frac{x}{3} \, dx = \int_0^2 \frac{2x}{3} \, dx + \int_2^3 4 - \frac{4x}{3} \, dx$
= $\left[\frac{x^2}{3}\right]_{x=0}^{x=2} + \left[4x - \frac{2x^2}{3}\right]_{x=2}^{x=3} = 2$

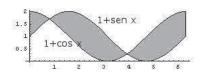


Como
$$\left(\frac{x^5}{5} - \frac{3x^4}{4} + \frac{2x^3}{3}\right)' = x^4 - 3x^3 + 2x^2 e$$

 $\left(\frac{x^5}{5} - \frac{3x^4}{4} + \frac{2x^3}{3}\right)' = x^4 - 3x^3 + 2x^2$

$$A = \int_0^1 (x^4 - 3x^3 + 2x^2) dx - \int_1^2 (x^4 - 3x^3 + 2x^2) dx$$

$$= \left[\frac{x^5}{5} - \frac{3x^4}{4} + \frac{2x^3}{3}\right]_{x=0}^{x=1} - \left[\frac{x^5}{5} - \frac{3x^4}{4} + \frac{2x^3}{3}\right]_{x=1}^{x=2} = \frac{1}{2}$$



$$\begin{split} A &= \int_0^{\pi/4} (1+\cos x) \, dx - \int_0^{\pi/4} (1+\sin x) \, dx + \int_{\pi/4}^{5\pi/4} (1+\sin x) \, dx - \\ &\int_{\pi/4}^{5\pi/4} (1+\cos x) \, dx + \int_{5\pi/4}^{2\pi} (1+\cos x) \, dx - \int_{5\pi/4}^{2\pi} (1+\sin x) \, dx \\ &= \int_0^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{5\pi/4} (\sin x - \cos x) \, dx + \int_{5\pi/4}^{2\pi} (\cos x - \sin x) \, dx \\ &= [\sin x + \cos x]_{x=0}^{x=\pi/4} + [-\cos x - \sin x]_{\pi/4}^{5\pi/4} + [\sin x + \cos x]_{5\pi/4}^{2\pi} \\ &= \sqrt{2} - 1 + 2\sqrt{2} + 1 + \sqrt{2} = 4\sqrt{2} \end{split}$$