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Machine Learning tasks

▶ Classification
▶ Given a sample of pairs < Obj , Class >, where

▶ Obj ∈ Objects
▶ Class ∈ Classes

▶ obtain a function f : Objects → Classes
▶ Regression

▶ Given a sample of pairs < Obj , Val >, where
▶ Obj ∈ Objects
▶ Val ∈ Values ⊆ R

▶ obtain a function f : Objects → Values



A regression example: data understanding

▶ Let’s look at the data (using part of Melbourne Housing data
set)
▶ Predictors: BuildingArea, Rooms and Distance
▶ Target: Price (Median value of homes)



A regression example: data understanding

▶ Can we predict Price from the predictors?
▶ What do plots tell us?



A regression example: modeling: Linear Regression

▶ We can obtain a linear function f from the data such that
▶ P̂rice = f (BuildingArea, Rooms, Distance)
▶ that can be done using Linear Regression

▶ If we have m attributes

ŷ = f (x1, x2, . . . , xm) = β0 +
m∑

i=1
βi .xi

- There is an algorithm that, given the data, finds the parameters
βi - it is based on a centuries old mathematical procedure



A regression example: modeling: Linear Regression

▶ Linear Regression
▶ Let’s visualize the effect of LR with one predictor: BuildingArea
▶ This is called simple regression
▶ The red line was algorithmically obtained from the data



A regression example: modeling: Linear Regression

▶ Linear Regression
▶ Let’s see the function obtained

P̂rice = 441450.16 + 4487.65 × BuildingArea



A regression example: modeling: Linear Regression

▶ Linear Regression
▶ how good is the model?
▶ we can measure R2 (r-squared), a measure of fit

▶ 0 is the worst fit (predicting average)
▶ 1 is the best fit (got them all)
▶ a low value indicates underfit

▶ a fit well above 0 may be useful
▶ depending on the problem
▶ in this case it is above zero but not high



A regression example: modeling: R squared
▶ What is R2 measuring?

▶ How much the predicted ŷ are close to the actual y
▶ The difference ei = ŷi − yi is a residual or error

▶ Best fit has ei = 0 for all i



A regression example: modeling: R squared

▶ The sum of the squares of the residuals is a measure of total
error

SSres =
n∑

i=1
e2

i

▶ We normalize this error with the error predicting the mean
SStot =

∑n
i=1(yi − y)2

▶ And subtract from 1

R2 = 1 − SSres
SStot



A regression example: modeling: multivariate regression

▶ Use more predictors
▶ the prediction is now a hyperplane on a 3 dimensional space
▶ the value of R2 increases considerably

LinearRegression(fit_intercept=True)



Regression: finding the model

▶ The regression model is found analytically
▶ −→

β = [ β0, β1, . . . , βm ]
▶ the i th case is xi = [1, x i

1, . . . , x i
m]

▶ then, we can use the dot product for estimating yi

ŷi =
−→
β .xi

▶ X is the n × (m + 1) matrix of independent variables with a
right column of 1s

▶ Y is the n × 1 matrix of target/dependent values

−→
β = (XT X )−1XT Y



Regression: finding the model

▶ Where does this equation come from?
▶ Aim is to find βi that minimize the squares of the residuals

▶ least squares approach

min−→
β

n∑
i=1

(
−→
β .xi − yi)2

▶ by deriving and equaling to zero we get to the
−→
β equation



Regression: finding the model: complexity

▶ Computational complexity analysis
▶ How hard is it to compute the βi?

▶ matrix multiplications can be O(n.m2)
▶ matrix inversion can be O(m3)

▶ not so bad
▶ linear with the number of cases (great)
▶ problematic with many predictors (usually not a problem)



More on regression

▶ Lasso regression (L1 Regularization):
Adds a penalty for the absolute size of coefficients:

Loss Function = RSS + λ
n∑

j=1
|βj |

▶ Ridge regression (L2 Regularization):
Adds a penalty for large coefficients:

Loss Function = RSS + λ
n∑

j=1
β2

j

▶ Polynomial regression
▶ Logistic regression



Logistic Regression

▶ Statistical method to model binary outcomes (yes/no, 0/1,
-1/1 etc)

▶ Instead of directly modeling the otucome, it gives the
probability of the outcome belonging to a particular class using
the logistic (sigmoid) function:

P(y = 1 | X ) = 1
1 + ϵ−(w0+w1x1+...+wnxn)



Logistic Regression: example

▶ Problem: a company wants to predict whether customers will
purchase a product (yes=1, no=0) based on the amount of
advertisements (x1).

Dataset:

Advertising budget (x1) Pruchase (y)
2 0
4 0
6 1
8 1

P(y = 1 | x1) = 1
1 + ϵ−(w0+w1x1)

▶ train the model



Logistic Regression: example

▶ Assume w0 = −4 and w1 = 0.9

P(y = 1 | x1) = 1
1 + ϵ−(4+0.9x1)

▶ Interpreting results: for x1 = 5 (advertising budget of $5):

P(y = 1 | x1 = 5) = 1
1 + ϵ−(4+0.9×5) ≈ 0.62

▶ meaning: there is a 62% chance that the customer will
purchase the product

▶ interpreting weights:
▶ w0 = −4: baseline log-odds when x1 = 0
▶ w1 = 0.9: for every 1-unit increase in x1, the log-odds of

purchase increase by 0.9



The nearest neighbor approach

▶ The aim of modeling is to discover the hidden function f
▶ f is able to estimate the target y for new cases x

▶ Linear regression approach
▶ f is assumed to have a linear form
▶ all we have to find are the parameters βi
▶ they are found analytically from the data



The nearest neighbor approach

▶ Nearest neighbor approach
▶ f is assumed to be locally smooth
▶ nearby cases tend to have similar values for f

▶ if sim(x1, x2) is small then f (x1) ≈ f (x2)
▶ we can estimate f (x) from the neighbors of x



The nearest neighbor approach

▶ Suppose we want to model the number of customers in a shop
given the time of the day
▶ These are the observations (the data)



The nearest neighbor approach

▶ Linear regression does not find a good solution
▶ the linear assumption is too strong



The nearest neighbor approach

▶ A nearest neighbour approach finds a better solution
▶ using 2 nearest neighbors
▶ the corresponding f adapts to the data
▶ be careful! - it may overfit



The k nearest neighbor approach: kNN

▶ Input:
▶ data X , y
▶ parameter k, number of neighbors
▶ distance measure d
▶ new case xnew

▶ Output:
▶ estimated value ŷ(xnew )

▶ Algorithm:
▶ calculate d(xi , xnew ) for each xi ∈ X
▶ obtain the k x(1), . . . , x(k) points that minimize d
▶ output ŷ(xnew ) = avgi x(i)



The nearest neighbor approach

▶ no model is produced
▶ lazy learning

▶ only use the data when you have to predict
▶ opposed to eager learning

▶ build the model as soon as you have the data



A classification example

▶ The kNN approach can also be used for classification
▶ The credit office of the bank also has records of previous loan

applications and the outcome of the credit (payed with no
difficulty, not an easy payment process). The aim is to find a
model that automatically supports the decision of the bank
credit office for loans

▶ This is a two class problem
▶ class1=‘easy’, class2=‘difficult’



A classification example: kNN

▶ The kNN approach for classification
▶ given a new application xnew
▶ find the k applications closer to xnew
▶ output the majority class in those cases



A classification example: kNN



Relevant issues

▶ Non-numerical variables in regression
▶ categorical can be binarized (dummy variables)

▶ The importance of distance functions in kNN
▶ hybrid distances

▶ The importance of normalization in kNN
▶ the <age,salary> example

▶ How do these methods cope with missing data?
▶ matrix operations
▶ distance functions
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