Semanas 9: Funções.

Nota: quando não explicitamente indicado, entende-se aqui que o domínio de uma função real de variável real é o maior subconjunto de \mathbb{R} para o qual a expressão dada faz sentido.

- 1. Considere a função f que a cada x faz corresponder $x^2 + 1$.
 - (a) Determine f(3) e f(0).
 - (b) Determine o domínio e a imagem de f.
- 2. Considere a função g que a cada x faz corresponder $\sqrt{x} + 3$.
 - (a) Determine g(4) e g(9).
 - (b) Determine o domínio e a imagem de q.
- 3. Determine o domínio e analise, quando aplicável, a paridade das funções f, g, h, s, t e v cujo termo geral é dado respetivamente por:

(a)
$$f(x) = \frac{1}{x^2 - x - 1}$$
; (d) $i(x) = \frac{\sqrt{x}}{x - 2}$; (g) $k(x) = \sqrt[4]{x^2 - 6x}$;

(d)
$$i(x) = \frac{\sqrt{x}}{x-2}$$
;

(g)
$$k(x) = \sqrt[4]{x^2 - 6x}$$

(b)
$$g(x) = \frac{x+1}{\sqrt{2x-1}}$$
; (e) $j(x) = \sqrt{9-x^2}$; (h) $m(x) = \sqrt[3]{x^2-9}$;

(e)
$$j(x) = \sqrt{9 - x^2}$$

(h)
$$m(x) = \sqrt[3]{x^2 - 9}$$

(c)
$$h(x) = x^2$$
;

(f)
$$l(x) = \sqrt{x} + \sqrt{1-x}$$

(f)
$$l(x) = \sqrt{x} + \sqrt{1-x}$$
; (i) $n(x) = \sqrt{x+1} - \frac{1}{x}$

- $4.\,$ Indique o valor de cada uma das seguintes funções nos pontos indicados:
 - (a) f tal que $f(x) = x^2 + 2x$ nos pontos 2, -2 e 4;
 - (b) $g \text{ tal que } g(x) = x^3 4x^2 \text{ nos pontos } 0, 1 \text{ e } -1;$
 - (c) h tal que h(x) = 2|x-1| nos pontos -2, 0, 2, 1 e -1;

(d)
$$i$$
 tal que $i(x) = \begin{cases} x^2 + 2 & \text{se } x < 0 \\ x + 1 & \text{se } x \ge 0 \end{cases}$ nos pontos $2, -2 \in 0$

(d)
$$i \text{ tal que } i(x) = \begin{cases} x^2 + 2 & \text{se } x < 0 \\ x + 1 & \text{se } x \ge 0 \end{cases}$$
 nos pontos 2, -2 e 0;
(e) $j \text{ tal que } j(x) = \begin{cases} 3x^2 & \text{se } x \le -1 \\ x + 1 & \text{se } -1 < x < 0 \end{cases}$ nos pontos -3, 0, 1 e 3.

5. Esboce o gráfico das seguintes funções e, em cada caso, diga se a função é injetiva e/ou sobrejetiva:

(a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \mapsto 4x + 5$

(b)
$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \mapsto |x|$;

(c)
$$h: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

 $x \mapsto |x|$

$$(d) \quad \begin{array}{ccc} j: \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \mapsto & x^2 \end{array}$$

(e)
$$k : \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \mapsto 4 - x^2$

$$(f) \begin{array}{ccc} l: \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \mapsto & x^3 \end{array}$$

$$(g) \quad \begin{array}{ccc} m: \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \mapsto & x^2 + 1 \end{array}$$

(a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \mapsto 4x + 5$; (b) $g: \mathbb{R} \longrightarrow \mathbb{R}$ $x \mapsto |x|$; (c) $h: \mathbb{R}^+ \longrightarrow \mathbb{R}$ $x \mapsto |x|$.

(d) $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \mapsto x^2$ (e) $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \mapsto 4 - x^2$ (f) $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f: \mathbb{R} \longrightarrow \mathbb{R}$ (g) $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f: \mathbb{R} \longrightarrow \mathbb{R}$ (i) $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f: \mathbb{R} \longrightarrow \mathbb$

(i)
$$p: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \mapsto x^3 + 1$

$$(j) \quad \begin{array}{ccc} q: \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & -x^2 \end{array}$$

$$\begin{array}{ccc} (\mathbf{k}) & r: \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & (x-2)^2 \end{array}$$

$$(1) \quad \begin{array}{ccc} s: \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & x^3 - 8 \end{array}$$

6. Esboce o gráfico das funções cujo termo geral é dado, indicando o domínio e se a função é injetiva e/ou sobrejetiva:

(a)
$$f(x) = \sqrt{x}$$
;

(b)
$$g(g) = \sqrt{x-3}$$
;

(c)
$$h(x) = \sqrt{x} + 4$$
;

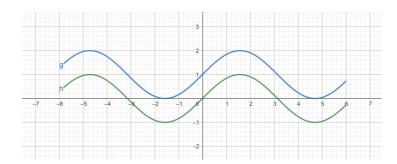
$$\begin{array}{ll} \text{(a) } f(x) = \sqrt{x}; & \text{(b) } g(g) = \sqrt{x-3}; & \text{(c) } h(x) = \sqrt{x} + 4; \\ \text{(d) } i(x) = \sqrt{x-3} + 4; & \text{(e) } j(x) = 3 - \sqrt{x+1}; & \text{(f) } \sqrt{4-x^2}. \end{array}$$

(e)
$$j(x) = 3 - \sqrt{x+1}$$
;

(f)
$$\sqrt{4-x^2}$$
.

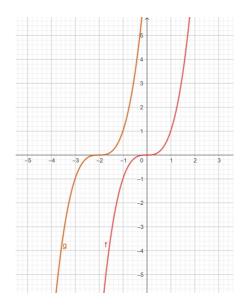
7. Esboce o gráfico das funções f e de g definidas, respetivamente, por f(x) = |x| e g(x) = |x-4|.

- 16
 - 8. Sabendo que a função $h:[-6,6] \to \mathbb{R}$ tem o gráfico indicado abaixi



descreva a função g em usando a função h.

9. Sabendo que a função $f:\mathbb{R}\to\mathbb{R}$ tem o gráfico indicado abaixo



descreva a função g
 usando a função f.

- 10. Seja $f(x) = \frac{1}{x-1}$ e $g(x) = \sqrt{x}$.
 - (a) Caracterize as funções f+g, f-g, fg, f/g e indique os seus domínios.
 - (b) Indique (f+g)(9), (f-g)(9), (fg)(9), f/g(9).
 - (c) Caracterize $f \circ g \in g \circ f$.
 - (d) Indique $f \circ g(9)$ e $g \circ f(9)$.
- 11. Se $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ $x \mapsto \sqrt{x}$ e $g:]-\infty, 2] \longrightarrow \mathbb{R}$ $x \mapsto \sqrt{2-x}$,

descreva as seguintes funções indicando o seu domínio:

- (a) $f \circ g$;
- (b) $g \circ f$;
- (c) $f \circ f$;
- (d) $g \circ g$.
- 12. Considere as funções f e g e determine $f\circ g,\, f\circ f$ e $g\circ f$ indicando os seus domáios:
 - (a) $f(x) = x^2$, $g(x) = \sqrt{x-4}$;
- (c) $f(x) = \frac{1}{x}$, $g(x) = \frac{x}{1+x}$;
- (b) $f(x) = x^2 + 1$, g(x) = x 1; (d) $f(x) = \frac{x}{x+1}$, g(x) = x 1.

13. Caso exista, encontre as funções inversas de cada uma das funções dadas e esboce os gráficos das funções $f, g \in h$:

(a)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \mapsto 4x + 5$; (b) $g: \mathbb{R} \longrightarrow \mathbb{R}$
 $x \mapsto \frac{x^3 - 1}{3}$; (c) $h: [2, +\infty[\longrightarrow \mathbb{R}_0^+]$;

- 14. Considere a função g definida em $[0, \pi]$ por g(x) = sen(x) + sen(2x).
 - (a) Determine os zeros da função g.
 - (b) Mostre que, para qualquer $x \in]0, \pi/2[$, g(x) é a área de um triângulo $\triangle ABC$, em que x é a amplitude do ângulo $\triangleleft BCA$, |BC| = 2, $\overline{B}H$ é a altura relativa ao vertice B e |AH| = 1.
- 15. Considere f e g as funções reais de variável real cujo termo geral é $f(x) = 9^x$ e $g(x) = (1/9)^x$.
 - (a) Determine:

f(0); f(1/2); f(-1/2); f(2); f(-1);

(b) Determine:

 $g(0); \qquad g(1/2); \qquad g(-1/2); \qquad g(2); \qquad g(-1); \qquad g(-2).$

- (c) Esboce os gráficos de f e de g.
- (d) Determine o conjunto solução das seguintes inequações:

i)
$$9^x \cdot 81 - 9 > 0$$
; ii) $\left(\frac{1}{9}\right)^{2x} - \left(\frac{1}{3}\right)^{x+1} > 0$.

16. Determine o domínio das funções f, g, h e i cuja expressão é dada por:

$$f(x) = 2 + \log_5 x;$$
 $g(x) = \log_{10}(x - 3);$ $h(x) = |\log_e x|;$ $i(x) = \log_e |x|.$

17. Determine o domínio das funções cujo termo geral é dado e, sempre que possível, a sua inversa:

(a)
$$f(x) = \log_{10}(x+3)$$
; (b) $g(x) = \log_3(x^2-1)$; (c) $h(x) = \log_e(x-x^2)$.

18. Resolva as seguintes equações:

(a)
$$e^{3-2x} = 4$$
; (b) $e^{2x} - e^x - 6 = 0$; (c) $3xe^x + x^2e^x = 0$; (d) $\log_2(25 - x) = 3$;

(e)
$$4 + 3\log_e(2x) = 16$$
; (f) $4e^{\log_e x} = x^3$; (g) $\log_3(x^2 - 1) = 0$; (h) $\log_3(x^2 - 1) = 1$.

19. Determine o conjunto solução de cada uma das seguintes inequações:

(a)
$$e^{3x} < 3$$
; (b) $x \log_2(2x - 1) < 0$; (c) $2e^x < 3$; (d) $x \log_2(2x + 1) < 3x$.

Funções contínuas

20. Considere a função

$$\begin{array}{cccc} f: \mathbb{R} & \longrightarrow & \mathbb{R} \\ & & \\ x & \mapsto & \left\{ \begin{array}{ccc} x^2 & & \text{se } x \leq 1 \\ 2x+1 & & \text{se } x > 1 \end{array} \right. \end{array}$$

- (a) Esboce o gráfico de f.
- (b) Diga se f é contínua.
- 21. (a) Mostre que a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^3 x + 3$ tem um zero entre -2 e -1.
 - (b) Encontre um valor aproximado de uma raiz do polinómio $x^3 x + 3$ com erro inferior a 10^{-2} .
- 22. (a) Mostre que a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^5 + 5x^4 + 2x + 1$ tem um zero entre -5 e -4.
 - (b) Encontre um valor aproximado de uma raiz do polinómio $x^5 + 5x^4 + 2x + 1$ com erro inferior a 10^{-1} .
- 23. Mostre que existe $x \in \mathbb{R}$ tal que sen x = x 1.