

ightharpoonup O conjunto dos números naturais representa-se por \mathbb{N} ,

$$\mathbb{N} = \{1, 2, 3, \cdots\}.$$

Temos ainda

$$\mathbb{N}_0 = \{0, 1, 2, 3, \cdots\}.$$

ightharpoonup O conjunto dos números inteiros representa-se por \mathbb{Z} ,

$$\mathbb{Z} = \{\cdots -3, -2, -1, 0, 1, 2, 3, , \cdots\}.$$

$$\mathbb{Z}^+ = \{1, 2, 3, \dots\}.$$
 $\mathbb{Z}^- = \{\dots -3, -2, -1\}.$
 $\mathbb{Z}^+_0 = \{0, 1, 2, 3, \dots\}.$
 $\mathbb{Z}^-_0 = \{\dots -3, -2, -1, 0\}.$

- O conjunto dos números racionais representa-se por Q e pode ser caraterizado de diferentes maneiras:

 - $\mathbb{Q} = \{ dizimas finitas ou infinitas periódicas \}.$
 - $\mathbb{Q}=\{x_o ext{ tal que } x_0 ext{ \'e solução de uma equação algébrica do } 1^o ext{ grau } \}.$

$$\mathbb{Q}^{+} = \{ q \in \mathbb{Q} : q > 0 \}.$$
 $\mathbb{Q}^{-} = \{ q \in \mathbb{Q} : q < 0 \}.$
 $\mathbb{Q}^{+}_{0} = \{ q \in \mathbb{Q} : q \geq 0 \}.$
 $\mathbb{Q}^{-}_{0} = \{ q \in \mathbb{Q} : q \leq 0 \}.$

- ightharpoonup O conjunto dos números irracionais representa-se por $\mathbb{R}\setminus\mathbb{Q}$ e pode ser caraterizado de diferentes maneiras:
 - $ightharpoonup \mathbb{R} \setminus \mathbb{Q} = \{ \text{ dízimas infinitas não periódicas } \}.$
 - ▶ $\mathbb{R} \setminus \mathbb{Q} = \{x_o \text{ tal que } x_0 \text{ é solução de uma equação algébrica de grau maior que 1 ou não é solução de qualquer equação algébrica <math>\}$.

$$\mathbb{R} \setminus \mathbb{Q}^+ = \{ x \in \mathbb{R} \setminus \mathbb{Q} : x > 0 \}.$$

$$\mathbb{R} \setminus \mathbb{Q}^- = \{ x \in \mathbb{R} \setminus \mathbb{Q} : x < 0 \}.$$

$$\mathbb{R} \setminus \mathbb{Q}_0^+ = \{ x \in \mathbb{R} \setminus \mathbb{Q} : x \ge 0 \}.$$

$$\mathbb{R} \setminus \mathbb{Q}_0^- = \{ x \in \mathbb{R} \setminus \mathbb{Q} : x \le 0 \}.$$

- ightharpoonup O conjunto dos números reais representa-se por $\mathbb R$ e é formado pelos números racionais e pelos números irracionais.
 - Os números x_o tais que x_0 é solução de uma equação algébrica de 1^o grau ou de grau superior chamam-se **números algébricos**. Por exemplo, $\sqrt[5]{3}$ é um número algébrico pois é solução da equação $x^5 3 = 0$.
 - Os números x_o que não é solução de qualquer equação algébrica chamam-se **transcendentes**. Por exemplo, mostra-se que π é um número transcendente.

$$\mathbb{R}^{+} = \{ x \in \mathbb{R} : x > 0 \}.$$

$$\mathbb{R}^{-} = \{ x \in \mathbb{R} : x < 0 \}.$$

$$\mathbb{R}^{+}_{0} = \{ x \in \mathbb{R} : x \geq 0 \}.$$

$$\mathbb{R}^{-}_{0} = \{ x \in \mathbb{R} : x \leq 0 \}.$$

- Chama-se **intervalo**, e representa-se por I, um conjunto de números reais tal que se a < b pertencem a I e a < c < b então o número c também pertence a I.
- Os intervalos podem ser dos seguintes tipos:
 - ▶ intervalo limitado e fechado: $[x_0, x_1] = \{x \in \mathbb{R} : x_0 \le x \le x_1\}$
 - ▶ intervalo limitado e aberto: $|x_0, x_1| = \{x \in \mathbb{R} : x_0 < x < x_1\}$
 - intervalo limitado, fechado à esquerda e aberto à direita: $[x_0, x_1] = \{x \in \mathbb{R} : x_0 \le x < x_1\}$
 - intervalo limitado, aberto à esquerda e fechado à direita: $]x_0, x_1] = \{x \in \mathbb{R} : x_0 < x \le x_1\}$
 - intervalo aberto e ilimitado à esquerda:

$$]-\infty, x_1[=\{x \in \mathbb{R} : x < x_1\}]$$

intervalo fechado e ilimitado à esquerda:

$$]-\infty, x_1] = \{x \in \mathbb{R} : x \le x_1\}$$

intervalo ilimitado à direita e aberto:

$$|x_0, +\infty| = \{x \in \mathbb{R} : x_0 < x\};$$

intervalo ilimitado à direita e fechado:

$$[x_0, +\infty[=\{x \in \mathbb{R} : x_0 \le x\}]$$

 $ightharpoonup \mathbb{R} =]-\infty, +\infty[$

Funções reais de variável real

Uma função f diz-se uma **função real** se as imagens de f são números reais. Uma função f diz-se **de variável real** se os objetos que f transforma são números reais. Nesta unidade curricular vamos apenas considerar funções reais de variável real, ou seja, funções $f:A\longrightarrow B$ onde $A,B\subset\mathbb{R}$.

- ▶ Se $f: A \longrightarrow B$ onde $A, B \subset \mathbb{R}$, A chama-se **o** domínio de f e representa-se por D_f e B chama-se **o** conjunto de chegada de f.
- Frequentemente uma função real é dada apenas através de uma expressão; nesse caso considera-se que o domínio é o maior conjunto onde a expressão faça sentido.
- Chama-se imagem de f ao conjunto $Im f = \{f(x), x \in A\} = \{y \in B : \text{ existe } x \in A : f(x) = y\}.$
- ▶ Dados $f: A \longrightarrow B$ e $S \subset A$, chama-se restrição de f a S, e representa-se por $f_{|S|}$, à função $S \longrightarrow B$.

$$x \mapsto f(x)$$

Funções reais de variável real - exemplos

- lack Se $f:\mathbb{R}\longrightarrow\mathbb{R}$, então $D_f=\mathbb{R}$, o conjunto de chegada é $x\mapsto x^2$ \mathbb{R} e $Im_f=\mathbb{R}^+_0$.
- ightharpoonup Se $g(x)=\sqrt{x-1}$ então $D_g=[1,+\infty[$ e $Im_f=\mathbb{R}_0^+.$
- > $\operatorname{sen}: \mathbb{R} \longrightarrow \mathbb{R} \operatorname{e} h(x) = \operatorname{sen}_{|[-\frac{\pi}{2}, \frac{\pi}{2}]} \operatorname{ent\~ao},$ $h: [-\frac{\pi}{2}, \frac{\pi}{2}] \longrightarrow \mathbb{R}$ $x \mapsto \operatorname{sen} x$

Funções injetivas e funções sobrejetivas

Consideremos a função $f: A \longrightarrow B$ onde $A, B \subset \mathbb{R}$.

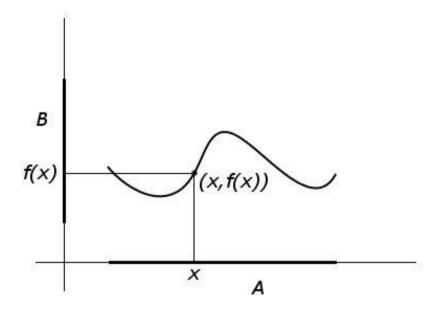
- Diz-se que f é **injetiva** se elementos distintos de A têm imagens diferentes, isto é, $f(x) = f(x') \Rightarrow x = x'$.
- Diz-se que f é **sobrejetiva** se Im f = B, isto é, qualquer elemento do conjunto de chegada é imagem de pelo menos um elemento de A.
- ightharpoonup Diz-se que f é **bijetiva** se é sobrejetiva e injetiva.

Funções injetivas e funções sobrejetivas - exemplos

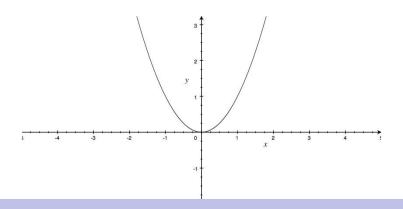
- $f: \mathbb{R} \longrightarrow \mathbb{R}$ não é injetiva pois, por exemplo, $x \mapsto x^2$ f(2) = f(-2), e não é sobrejetiva pois, por exemplo, -1 não é imagem de qualquer número.
- $ightharpoonup g(x) = \sqrt{x-1}$ e $h(x) = \operatorname{sen}_{\left[\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right]}$ são funções injetivas.

Funções - gráfico

O gráfico de $f: A \longrightarrow B$ é o conjunto $\{(x, f(x)), x \in A\}$.

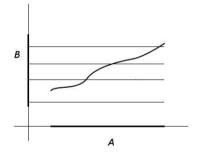


Por exemplo, o gráfico de $f: \mathbb{R} \longrightarrow \mathbb{R}$ é $\{(x, x^2): x \in \mathbb{R}\}$.

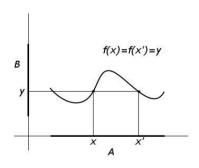


Função injetiva - gráfico

- ▶ f é injetiva se, para qualquer valor de B, a reta horizontal com essa ordenada interseta o gráfico de f no máximo num ponto (pode não intersetar em qualquer ponto).
- Função injetiva

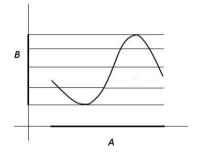


Função não injetiva

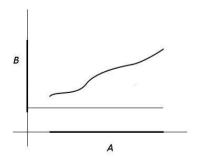


Função sobrejetiva - gráfico

- ightharpoonup f é sobrejetiva se, para qualquer valor de B, a reta horizontal com essa ordenada interseta o gráfico de f em pelo menos um ponto.
- Função sobrejetiva



Função não sobrejetiva



Operações com funções reais de variável real

Se
$$f: A \longrightarrow \mathbb{R}$$
 e $g: C \longrightarrow \mathbb{R}$ então $x \mapsto f(x)$ $x \mapsto g(x)$

$$\begin{array}{cccc} & & & & & & & & & & & & \\ & & & f + g & \longrightarrow & & & & \\ & & & & x & \mapsto & f(x) + g(x) \end{array}$$

$$\begin{array}{cccc} \blacktriangleright & f - g : & D_{f-g} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & f(x) - g(x) \end{array}$$

$$\begin{array}{cccc} \blacktriangleright & fg : & D_{fg} & \longrightarrow & \mathbb{R} \\ & x & \mapsto & f(x)g(x) \end{array}$$

$$\begin{array}{cccc}
 & f \\
\hline
g & D_{\frac{f}{g}} & \longrightarrow & \mathbb{R} \\
 & \chi & \mapsto & \frac{f(\chi)}{g(\chi)}
\end{array}$$

►
$$D_{f+g} = D_{f-g} = D_{fg} = \{x \in D_f \text{ e } x \in D_g\} \text{ e}$$

 $D_{\frac{f}{g}} = \{x \in D_f, x \in D_g \text{ e } x \neq 0\}.$

Exemplo - Operações com funções

Se
$$f: \mathbb{R}_0^+ \longrightarrow \mathbb{R}$$
 e $g: \mathbb{R} \longrightarrow \mathbb{R}$ então $x \mapsto \sqrt{x}$ e $x \mapsto 2x$

$$\begin{array}{cccc}
 & f + g : \mathbb{R}_0^+ & \longrightarrow & \mathbb{R} \\
 & x & \mapsto & \sqrt{x} + 2x
\end{array}$$

$$\begin{array}{ccccc}
 & f - g : \mathbb{R}_0^+ & \longrightarrow & \mathbb{R} \\
 & x & \mapsto & \sqrt{x} - 2x
\end{array}$$

$$fg: \mathbb{R}_0^+ \longrightarrow \mathbb{R} \\
 x \mapsto 2x\sqrt{x}$$

$$\begin{array}{ccccc}
 & f \\
\hline
 & g : \mathbb{R}^+ & \longrightarrow \mathbb{R} \\
 & \chi & \mapsto \frac{\sqrt{\chi}}{2\chi}
\end{array}$$

▶
$$D_{f+g} = D_{f-g} = D_{fg} = \{x \in \mathbb{R}_0^+ \text{ e } x \in D_g\} = \mathbb{R}_0^+ \text{ e}$$

 $D_{\frac{f}{g}} = \{x \in \mathbb{R}_0^+, x \in \mathbb{R} \text{ e } x \neq 0\} = \mathbb{R}^+.$

Composição de funções

Dadas duas funções $f: A \longrightarrow B$ e $g: B \longrightarrow C$ chama-se **composta de** g **com** f, e representa-se por $g \circ f$ (lê-se g após f), a função $g \circ f: A \longrightarrow C$ definida por $g \circ f(x) = g(f(x))$.

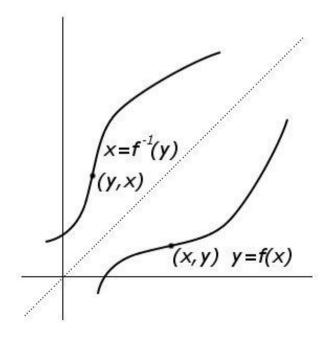
Exemplo:

Se $f: \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ é definida por $f(x) = \sqrt{x}$ e $g: \mathbb{R} \longrightarrow \mathbb{R}$ é definida por $g(x) = sen^4(x)$, então $g \circ f: \mathbb{R}_0^+ \longrightarrow \mathbb{R}$ é definida por $g \circ f(x) = sen^4(\sqrt{x})$ e $f \circ g: \mathbb{R} \longrightarrow \mathbb{R}$ é definida por $f \circ g(x) = \sqrt{sen^4(x)} = sen^2(x)$.

Funções - função inversa

Dada uma função bijetiva, isto é, injetiva e sobrejetiva, $f: A \longrightarrow B$, chama-se **inversa de** f, e representa-se por f^{-1} , a função $f^{-1}: B \longrightarrow A$ definida por $f^{-1}(x) =$ único elemento de A cuja imagem por f é x.

- ► Tem-se que $f \circ f^{-1} = id_B$ e $f^{-1} \circ f = id_A$.
- O gráfico de f^{-1} obtém-se reflectindo o gráfico de f na reta de equação y = x.



Função inversa - exemplos

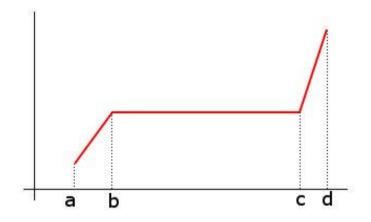
- $f: \mathbb{R} \longrightarrow \mathbb{R}$ é injetiva e sobrejetiva, sendo $x \mapsto 2x+5$ $g^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$ $x \mapsto \frac{x-5}{2}$

Função inversa - exemplos

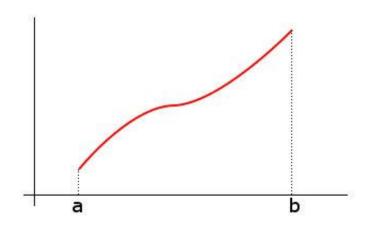
Funções crescentes

Seja $f:A\longrightarrow \mathbb{R}$

Diz-se que f é crescente em $I \subset A$ se para $x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$.



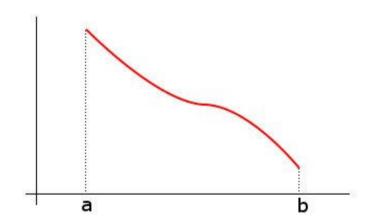
Diz-se que f é estritamente crescente em $I \subset A$ se para $x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.



Funções decrescentes

Seja $f:A\longrightarrow \mathbb{R}$

- Diz-se que f é decrescente em $I \subset A$ se para $x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$.
- Diz-se que f é estritamente decrescente em $I \subset A$ se para $x_1, x_2 \in I$, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.



Funções exponenciais

Lembremos que dado um número real a, para qualquer número natural n

$$a^n = \underbrace{a \times a \times a \cdot \cdots \times a}_{n \text{ vezes}}$$

para $a \neq 0$ e $n \in \mathbb{N}$,

$$a^{-n} = \frac{1}{a^n}$$

e para $a \in \mathbb{R}_0^+$ e $\frac{n}{m} \in \mathbb{Q}$

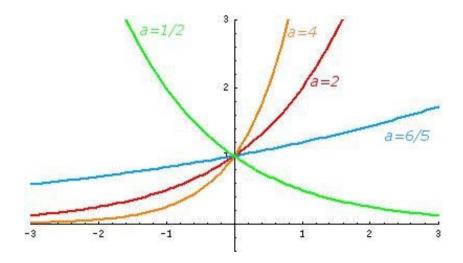
$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

Por exemplo,
$$2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 16$$
, $6^{-2} = \frac{1}{6^2} = \frac{1}{36}$ e $2^{\frac{3}{7}} = \sqrt[7]{2^3} = \sqrt[7]{8}$.

Funções exponenciais

Estando assim definido a^q para qualquer número racional $q \neq 0$, estendemos a função para $a \in \mathbb{R}^+ \setminus \{1\}$ a qualquer número real x>0 e obtemos a função exponencial de base $a \in \mathbb{R}^+ \to \mathbb{R}^+$.

Gráficos de
$$\mathbb{R}$$
 \longrightarrow \mathbb{R} para $a=2,4,\frac{6}{5},\frac{1}{2}$. $x\mapsto a^x$



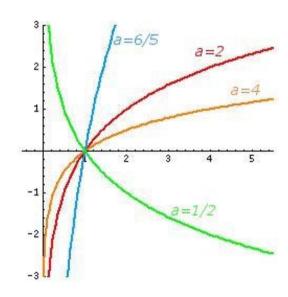
Observemos que a^x é bijetiva, isto é, é injetiva e sobrejetiva, e que é crescente se a>1 e decrescente se a<1.

Funções logarítmicas

Chama-se função logaritmo de base a, e representa-se por \log_a , a função inversa da função exponencial de base a. Assim,

$$\log_a b = c \iff b = a^c$$
.

Gráficos de \log_a para $a = 2, 4, \frac{6}{5}, \frac{1}{2}$.



Funções exponenciais e logarítmicas

Algumas propriedades $(a, b \in \mathbb{R}^+ \setminus \{1\})$

$$ightharpoonup a^{x+y} = a^x a^y$$

$$ightharpoonup a^{xy} = (a^x)^y$$

$$a^{-x} = \frac{1}{a^x}$$

$$\triangleright \log_a 1 = 0$$

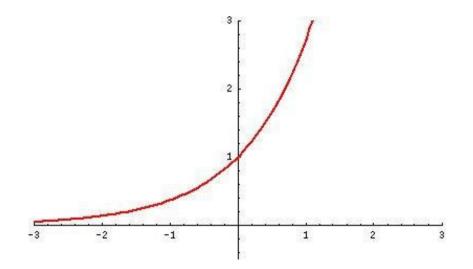
$$ightharpoonup a^{\log_a x} = x$$

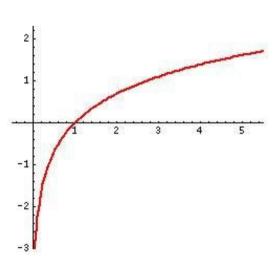
Exponencial e logaritmo de base e

Consideremos o número $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = 2,718...$

A função exponencial de base e chama-se simplesmente função exponencial e representa-se por e^x ou exp.

Analogamente, no caso do logaritmo de base e, em vez de \log_e escreve-se \log ou \ln .





Resolução de algumas inequações

- $e^{3x} < 5$ $e^{3x} < 5 \iff 3x < \ln 5 \iff x < \frac{1}{3} \ln 5.$
- $2e^x < 3$ $2e^x < 3 \Longleftrightarrow e^x < \frac{3}{2} \Longleftrightarrow x < \ln \frac{3}{2} \Longleftrightarrow x < \ln 3 \ln 2.$
- $\log_{1/5}(6x) > 0$ $6x > 0 \text{ e } \log_{1/5}(6x) > \log_{1/5} 1 \iff$ $x > 0 \text{ e } 6x > 1 \iff x > \frac{1}{6}.$