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Overview

• spectrum estimation
– introduction

– non-parametric methods

• the periodogram

• the modified periodogram

• Bartlett’s method, Welch’s method, and Blackman-Tukey method

• periodogram-based frequency estimation

– minimum-variance spectrum estimation

– maximum entropy spectrum estimation

– parametric methods

– frequency estimation

– principal components spectrum estimation
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• introduction
– objective is to estimate the power spectral density of a wide-sense 

stationary random process,

• the power spectrum is the Fourier transform of the autocorrelation sequence

– for an ergodic process, the autocorrelation may be estimated as

two difficulties exist:

• the amount of data is finite

• data is often corrupted by noise or contaminated with an interfering signal

 spectrum estimation is a problem that involves estimating PX(ej) from a 

set of noisy measurements of x[n]

– spectrum estimation is important in many areas including

• signal detection and tracking (e.g. sonar)

• harmonic analysis and prediction

• time series extrapolation, spectral smoothing, bandwidth compression

• beamforming and direction finding

spectrum estimation
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• introduction
– two main classes of approaches to spectrum estimation:

• non-parametric methods, which include the periodogram, the modified 

periodogram, Bartlett’s method, Welch’s method, and the Black-Tukey method 

• parametric methods, which include a specific model to the data such as AR, 

MA, and ARMA

– we will also consider the minimum variance method which involves power 

spectrum estimation at the center of each band-pass filter of a narrow-

band filter bank, as well as the maximum entropy method (MEM) that 

presumes the all-pole model

– the problem of frequency estimation for harmonic processes that consist 

of a sum of sinusoids or complex exponentials in noise, is also addressed 

and involve such algorithms as Pisarenko harmonic decomposition, 

MUSIC, the eigenvector method and the minimum norm algorithm

– a quick perspective is also given on principal components frequency 

estimation

spectrum estimation
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• non-parametric methods: the periodogram
– the periodogram is easy to compute but is limited in its ability to produce 

an accurate estimate of the power spectrum, especially for short data 

records

by definition                                       which denotes that the power spectrum

estimation problem is an autocorrelation estimation problem; when x[n] is

measured over a limited time internal, n=0,1,…,N-1, then

excluding all data values outside the n=0,1,…,N-1 interval,

and

spectrum estimation

�̂� �� � �̂�
∗ � ,  �̂� � � 0,  � � 


Note: this is a biased estimator, an 

unbiased estimator would divide 

by N-k, instead of just N
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the periodogram is obtained as

it may also be conveniently expressed as a function of x[n] by considering a

windowed representation of the signal

therefore

which means, according to the convolution theorem

where 

spectrum estimation
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thus, the periodogram is proportional to the squared magnitude of the DTFT

of xW[n] and may be easily computed using a DFT:

The periodogram has an interesting interpretation in terms of filter banks

As discussed in the last class, the DFT may be regarded as a bank of filters

whose impulse responses are generally given by

and the corresponding frequency responses, when w[n] is the rectangular

window, are given by

spectrum estimation
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an example of the normalized magnitude of this frequency response is

represented next for channel k=8, when N=32

Therefore, each channel of the DFT may be regarded as the output of a

band-pass filter which is centered at                       and whose bandwidth

is approximately                       in case w[n] is the rectangular window

As also derived in the last class, the output of the k-th channel (or sub-band) 

of the DFT filter bank may be characterized as

spectrum estimation
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by normalizing the gain of the output of each sub-band (simply achieved by

dividing by N), then, the power spectrum of x[n] and y[n] are equal at

frequency K, i.e.

if the bandwidth is small enought so that the power spectrum of x[n] is

approximately constant over the pass band of the filter, then the power in

yK[n] is approximately

and, therefore, by estimating the power in yK[n] as

which is equivalent to the periodogram.

spectrum estimation
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• performance of the periodogram
in order to be a consistent estimator of the power spectrum, the mean-square

convergence of the periodogram must be asymptotically unbiased, i.e.

and the variance should go to zero as the data lenght N tends to infinity, i.e.

Concerning bias, we evaluate first the expected value of the estimated

autocorrelation

which may be expressed as

where wB[k] is the Bartlett (triangular) window 

spectrum estimation
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if the rectangular window is used, the expected value of the periodogram is

using the frequency convolution theorem

Thus, the expected value of the periodogram is the convolution of the power

spectrum PX(ej) with the Fourier transform of the Bartlett window, and

therefore, the periodogram is a biased estimate. However, since WB(ej)

converges to an impulse as N tends to infinity, the periodogram is

asymptotically unbiased

spectrum estimation

Note: it is equivalent to say «convolution of the power spectrum PX(ej) with the Fourier 

transform of the Bartlett window of size 2N-1», or «convolution of the power spectrum 

PX(ej) with the square of the Fourier transform of the rectangular window of size N», 
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Example: a random process consists of a random-phase sinusoid in white

noise with variance V
2, find the power spectrum, consider the effect of the

Bartlett window (the “lag window”) and plot numerical results of the power

spectrum estimation

Since                                             and given that  is a uniformly distributed

random variable in the range [-, ], then the power spectrum results as

spectrum estimation

0 

V
2

A2/2
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Example (cont.)

since                                                        and                                            then:

important consequences:
• a smoothing effect is noticeable that is due to WB(ej) and that leads to a spreading of the 

power of the sinusoid over the main lobe of  |WB(ej)|

• a power leakage through the sidelobes of the window, which creates secondary spectral 

peaks that may mask low-level components of the signal, and limits the ability of the 

periodogram to resolve closely-spaced frequencies

• the Bartlett window limits the ability of the periodogram to resolve closely-spaced narrow-

band components in x[n], the resolution is about 0.89*2/N

spectrum estimation

0 

V
2

A2/4
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We recall that in order for the spectrogram to be a consistent estimator, the 

variance should vanish to zero when N tends to infinity

Monson Hayes shows (page 404) that while it is difficult to evaluate the 

variance of the spectrogram for a general random process, results may be 

found for white Gaussian noise, specifically M. Hayes shows that the 

covariance and the variance of the spectrogram are respectively given by:

and

which reveals that the variance does not converge to zero as N tends to 

infinity and, therefore, the periodogram is not a consistent estimator of the 

power spectrum (in the specific case it corresponds to white Gaussian noise)

in the more general case of a Gaussian random process, it can be shown (M. 

Hayes, page 407) that the variance of the periodogram is proportional to the 

square of the power spectrum

spectrum estimation
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– Matlab code illustrating spectrum estimation using the periodogram and 

the averaged spectrogram

A=2; N=80; % N is the length of the data vector
n=[0:N-1]; nptsfft=1024; % nptsfft is the FFT size
indx=[0:nptsfft/2]/(nptsfft/2); % frequency index up to Nyquist frequency
Psum=zeros(1,nptsfft/2+1); nsum=0; % for the averaged periodogram
omega=pi/4; % frequency of the sinusoid

for k=1:30   % try just 30 instances of the periodogram
phi=2*(rand-0.5)*pi;
x=A*sin(n*omega+phi)+0.4*randn(1,N);
corr=xcorr(x); % this is the biased estimator
X=fft(corr, nptsfft);
P=(abs(X(1:nptsfft/2+1)));
% this is equivalent to X=fft(x, nptsfft); P=(abs(X(1:nptsfft/2+1)).^2);
figure(2); hold on;
plot(indx, 10*log10(P)); hold off
xlabel('Normalized Frequency (\omega/\pi)'); ylabel('Gain (dB)'); 
title('Periodogram');

Psum=Psum+P; nsum=nsum+1;
figure(3); plot(indx, 10*log10(Psum/nsum)); axis([0 1 -15 45]);
xlabel('Normalized Frequency (\omega/\pi)'); ylabel('Gain (dB)'); title('Averaged 
Periodogram')

end

% reference  Dirichlet function (periodic sinc function)
w=2*[0:nptsfft-1]/nptsfft-omega/pi; H=N*abs(sinc(w*N/2)./sinc(w/2));
figure(2); hold on; plot(indx, 10*log10((H(1:nptsfft/2+1)).^2),'m')
axis([0 1 -15 45]); hold off;

figure(3); hold on;
plot(indx, 10*log10((H(1:nptsfft/2+1)).^2),'m')
hold off

spectrum estimation
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– figures generated by the above Matlab code

– the figure on the left illustrates an overlay of 30 periodograms and well as 

the true periodogram (magenta plot), the figure on the right represents the 

averaged spectrogram as well as the true periodogram (magenta plot), 

– these figures illustrate that there is a considerable amount of variation 

from one single periodogram to the next and that averaging periodograms 

improves the convergence to the true power spectrum

spectrum estimation
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• the modified periodogram
it has been shown previously that the periodogram is proportional to the 

squared magnitude of the Fourier transform of the windowed signal 

this result can be generalized for any window w[n] which leads to the 

modified periodogram; it can be shown that (presuming the window is real)

in particular, in the case of the rectangular window (w[n]=1, n=0,1,...,N-1), then 

• when compared to other windows, the rectangular window has the narrowest 

main lobe in the frequency response, but because it has high side lobes, it 

suffers from the strongest leakage effect  (which means it may easily mask weak 

narrowband components)

spectrum estimation

Note: recall the Note in slide 10 
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The periodogram of a process that is windowed with a general window w[n] 

is called a modified periodogram and is given by

where N is the length of the window and U is a normalizing factor obtained as

and its purpose is to make PM(ej) asymptotically unbiased, in fact, in can be 

shown (M. Hayes, page 411) that when N tends to infinity

On the other hand, the variance of the modified periodogram is proportional 

to the square of the power spectrum (as the periodogram) which means the 

modified periodogram is not a consistent estimator of the power spectrum

• the window essentially provides a trade-off between spectral resolution (main 

lobe width) and spectral masking (sidelobe magnitude)

spectrum estimation

Note: Munson Hayes provides (page 410) a Matlab 

function allowing to compute the periodogram 
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A few commonly used windows: Rectangular, Hanning, Hamming, Blackman

• impulse responses (N=31)

• windows are frequently compared using such properties as the main-side lobe 

attenuation and the 3dB bandwidth of the main lobe

spectrum estimation

window sidelobe level (dB) 3 dB BW

Rectangular

Hanning

Hamming

Blackman

-13

-32

-43

-58

0.89(2/N)

1.44(2/N)

1.30(2/N)

1.68(2/N)
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A few commonly used windows: Rectangular, Hanning, Hamming, Blackman

• frequency responses (N=31)

spectrum estimation
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• Bartlett’s method: periodogram averaging
– unlike the periodogram or the modified periodogram, Bartlett’s method is a 

consistent estimator of the power spectrum

• since averaging a set of uncorrelated measurements of a random variable 

yields a consistent estimate of the mean, the main idea is therefore to estimate 

the power spectrum by periodogram averaging

The Bartlett estimate is given by 

• the x[n] sequence is partitioned into L nonoverlapping sub-sequences of length 

N, a periodogram is obtained for each sub-sequence and a final power 

spectrum estimate is computed by averaging the L spectrograms

the expected value and variance of the Bartlett estimate are given 

respectively by

and

if both L and N are allowed to tend to infinity, then the Bartlett method is a 

consistent estimator of the power spectrum

spectrum estimation
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• Welch’s method: averaging modified periodograms
– consists of two modifications to Bartlett’s method:

• the sub-sequences of data are allowed to overlap

• the sub-sequences of data are windowed

thus, Welch’s method involves averaging a set of modified periodograms:

(amount of overlap is N-D) the expected value of Welch’s estimate is

• which shows that as the previous periodogram-based estimators, Welch’s 

method is an asymptotically unbiased estimator of the power spectrum

concerning variance, because the overlapping sub-sequences are not

uncorrelated, evaluating the variance of estimate is difficult, a

specific result has been found for 50% overlap and the Bartlett window:

spectrum estimation

Note: this variance is larger by a factor of 9/8 than the 

variance of the Bartlett estimator (M. Hayes, pag 418)  
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• Blackman-Tukey method: periodogram smoothing
– whereas the previous methods aim at reducing the variance of the 

periodogram using averaging, this BT method aims at decreasing the 

statistical variability of the periodogram by de-emphasizing the contribution 

of unreliable estimates of the autocorrelation sequence to the periodogram

• in fact, for finite data records of length N, the variance of rX[k] will be large when 

k is close N-1 (e.g. rX[N-1]=x[N-1]x[0]/N), therefore these estimates are unreliable

• one way to reduce the contribution of these estimates to the periodogram, is by 

applying a window to rX[k]

the Blackman-Tukey spectrum estimate is 

• w[n] is the lag window, it has a double purpose: i) to limit the autocorrelation 

sequence such as to ignore the coefficients that have large variance, ii) to de-

emphasize the contribution of rX[k] when k is close to M, a recommendation is 

that M=N/5

• the lag window w[n] should be conjugate symmetric so that W(ej) is real-

valued, also W(ej) should be positive such that PBT(ej) is non-negative

M. Hayes shows (pages 424-425) that periodogram-based power spectrum 

estimators have a performance that is quite comparable (and that depends 

essentially on the amount of data that is available), the main difference lies in 

the tradeoff between spectral resolution, leakage, and variance

spectrum estimation
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spectrum estimation

• periodogram-based frequency estimation
– the periodogram may be used to estimate the frequency (and also 

magnitude and phase) of a sinusoid while taking advantage of the 

knowledge of the window function, in our discussion here we will focus on 

frequency estimation of a sinusoid and using the rectangular window

The periodogram-based approach to frequency analysis may be represented 

by the sequence of processing steps:

Let us assume x[n] is (as considered in slide 11)

where v[n] represents white noise with variance V
2, A represents the

magnitude of the sinusoid and  is a uniformly distributed random variable in

the range [-, ]. To simplify the analysis, we ignore the phase and noise as

they do not have na influence of the main result we are looking for, therefore
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spectrum estimation

and since the frequency response of the rectangular window is given by

then

which may be illustrated, ignoring phase effects, as

0-0 0
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spectrum estimation

As the DFT is a sampling of XW(ej):

two situations may occur, either 0 corresponds to a frequency which is

exactly sampled by the DFT (which is quite unlikely), in this case

where l is an integer, and the sampling of XW(ej) can be ilustrated as

or, in general, 0 is given by                          , where l is an integer and l is

a real number, 0.0  l < 1.0 

kl

-l

0
l-1 l+1

l+2l-2
-l+1-l-1
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spectrum estimation

In this case, leakage will occur, as expected, which can be illustrated as

which highlights that, at most, two spectral lines will fall within the main lobe

of each one of the two periodic sinc functions, which correspond to the

largest values in the magnitude spectrum |XW[k]|. This suggests that since

the exact shape of each sinc function is known and since the largest |XW[k]|

values can be readily identified, it should be possible to estimate l.

kl

-l

0

l

l

l+1
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spectrum estimation

In our analysis we consider only the magnitude spectrum |XW[k]| in the

positive part of the frequency axis. Therefore

and, considering that 

the sampled periodic sinc function reduces to

As a result, the two largest values in the magnitude spectrum (which form a

local maximum in the magnitude spectrum) corrrespond to

and

By forming the ratio |XW[l]| / |XW[l+1]| independence is achieved with respect 

to the sinusoid magnitude and gain of the window  
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spectrum estimation

Thus, is can be easily concluded that

and, finally,

It should be noted that this function is only valid if the rectangular window is

used.  It leads to the exact l value in the case of a complex sinusoid (why ?)

and in the absence of noise. For real sinusoids, or when multiple sinusoids

exist, and under the influence of noise, estimates are only approximate. Still,

Results are much better that coarse frequency estimation.

In fact, the maximum relative error of coarse frequency frequency estimation 

(which just says that the frequency of the sinusoid is obtained from the k index of 

the largest |XW[l]| DFT as l2/N) is 0.5*2/N / (2/N), i.e. 50% the frequency 

resolution of the DFT (also referred to as “bin width” ).

Simulation tests with a real sinusoid, N=128 and 10dB SNR, reveal that most 

frequently the relative estimation error is just about 3% of the bin width 

and, in the worst cases (when l is close to 0 or to N/2-1), it can reach 10%.
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spectrum estimation

The following Matlab code illustrates frequency estimation of a real sinusoid

under 10 SNR (white, Gaussian) noise influence. l and l may be set as desired.

N=128; N2=N/2; n=[0:N-1]; trueell=13; truedeltaell=0.35;

omega=2*pi*(trueell+truedeltaell)/N;

A=1; SNR=10; sigmanoise=sqrt(A^2/(2*10^(SNR/10))); % standard deviation

h=rectwin(N).';

niter=100; relerror=0; accdata=[]; % run 100 iterations to average noise effects

for k=1:niter

phi=2*(rand-0.5)*pi;

x=A*sin(n*omega+phi); %  power is A^2/2 ~ sum(x.^2)/N

noise=sigmanoise*randn(1,N); % power is sum(noise.^2)/N

%     10*log10((x*x.')/(noise*noise.')) % = 10*log10(var(x)/var(noise)) % check SNR

x=x+noise;

x=x.*h; X=fft(x); [value ell]=max(abs(X));

if (ell==1 || ell==N2+1 || ell==N2+2 || ell==N) disp('No sinusoids found');

return; end;

if (abs(X(ell+1))<abs(X(ell-1))) ell=ell-1; end 

deltaell=N/pi*atan((sin(pi/N)/(cos(pi/N)+abs(X(ell)/X(ell+1))))); %freq estimate

estomega=2*pi*(ell-1+deltaell)/N; % -1 is because of indexing in Matlab

relerror=relerror+abs(estomega-omega)/(2*pi/N); % normalizes by DFT resolution

accdata=[accdata abs(estomega-omega)/(2*pi/N)]; 

end

relerror=relerror/niter*100

figure(1); stem(n,abs(X)); figure(2); plot(accdata*100)
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• useful Matlab functions

[Pxx,W] = PERIODOGRAM(X,WINDOW,NFFT) 

• Power Spectral Density (PSD) estimate via periodogram method

[Pxx,W] = PWELCH(X,WINDOW,NOVERLAP,NFFT)

• Power Spectral Density estimate via Welch's method

rectwin, bartlett, blackman, chebwin, hamming, hann, hanning, kaiser,…

• window functions

H = SPECTRUM.<ESTIMATOR>

• SPECTRUM Spectral Estimation

• returns a spectral estimator in H of type specified by ESTIMATOR

• There are three types of estimators: power spectral density (PSD), mean-square spectrum 

(MSS), and pseudo spectrum

spectrum estimation
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• Minimum variance (MV) spectrum estimation
– the power spectrum is estimated by filtering a process with a bank of 

narrowband bandpass filters, which is similar to the interpretation given in 

slides  6, 7 and 8 to the spectrogram, the difference lies however in the 

fact that the filters are not simple modulations (to a frequency that is multiple 

of 2/N) of a baseband prototype filter, in fact  in MV spectrum estimation, 

the filters are data dependent 

• each filter in the filter bank is data adaptive and “optimum” in the sense of 

rejecting as much as possible out-of-band signal power

MV spectrum estimation consists of three steps:

1. design a bank of band-pass filters g
l
[n] with center frequency 

l
and 

effectively rejecting out of band power

2. estimate the power in each output y
l
[n]

3. set PX(ej) equal to the power estimated in 2 divided by the filter bandwidth

if g
l
[n] is a complex-valued FIR filter of order p, in order not to modify the

power of the signal at frequency 
l

spectrum estimation
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if                                                    and                                         then

and given that (week 3, slide 6) 

which, in our case leads to                                    , minimizing this result

subject to                leads to (M.Hayes, section 2.3.10):

and

spectrum estimation

h[n]
rx[n] ryx[n]

h*[-n]
ry[n]

Note: although these results were derived 

for 
l

they can be generalized for all 
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the MV power spectrum estimate is obtained by dividing the power

estimate by the bandwidth of the bandpass filter (M. Hayes, page 427)

• M.Hayes details (pages 427-433) ways to efficiently compute this result as well as 

to use it to estimate the frequency of a sinusoid or a complex exponential in 

noise

• since this result implies the inversion of the autocorrelation matrix RX, in order 

to reduce computational costs, the filter order (p) and, therefore, the matrix 

order is generally much smaller than the data length (N)
– also to avoid the large variance of the autocorrelation estimates for values of k that are close to N

spectrum estimation

Note: Since RX is Toeplitz, the inverse may 

be found using either the Levinson 

recursion or the Cholesky decomposition

Note: Munson Hayes provides (page 430) a Matlab function 

minvar() allowing to compute the MV spectrum 
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• the Maximum Entropy method (MEM)
– this method is suited to estimate more accurately the power spectrum in 

those cases where the autocorrelation sequence needs to be extrapolated 

beyond the lag corresponding to the length of the data, N

• classical methods extrapolate the autocorrelation sequence for lags |k|>N with 

zeros, which is equivalent to windowing the autocorrelation sequence

• many signals of interest (e.g. narrowband processes that have autocorrelations that 

decay slowly with k) have autocorrelations that are nonzero for |k|N, in these 

cases windowing may significantly limit the resolution and accuracy of the 

estimated spectrum

• MEM suggests one possible way to perform extrapolation

if the autocorrelation values rX[k] of a WSS process are known up to lag

|k|p, and rE[k] are extrapolated, then the power spectrum is

and should correspond to a valid spectrum, i.e. PX(ej) should be real-valued

and non-negative for all 

spectrum estimation
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extrapolating rE[k] while complying with these constraints may be achieved in

such a way as to maximize the entropy (a measure of randomness or

uncertainty) of the process

• a maximum entropy criterion extrapolation is equivalent to finding the sequence 

of autocorrelations rE[k] that make x[n] as white as possible, i.e. such that 

PX(ej)  is as flat as possible

for a Gaussian random process with power spectrum PX(ej) the entropy is

when only the partial autocorrelation sequence rX[k], |k|p, is known, the rE[k]

values are found so that the entropy is maximized and subject to the

condition that 

spectrum estimation
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the values of rE[k] that maximize the entropy may be found by setting

using the conjugate symmetry of rX[k] (rX[-k]=rX
*[k]) and (equation in slide 27)

then, one obtains                                                                    which means the

inverse Fourier transform of the reciprocal of the power spectrum is a finite-

length sequence that is zero for |k|>p, i.e. defining                                then

spectrum estimation
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therefore                                                         reveals that the maximum

entropy power spectrum for a Gaussian process, is an all-pole power spectrum

and using the spectral factorization theorem, one obtains

which uses                                            and

Therefore, the ap[k] and b[0] coefficients should be chosen in such a way that

the inverse Fourier Transform of PX(ej) produces an autocorrelation

sequence that matches rX[k], |k|p

spectrum estimation
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This is equivalent to say that the ap[k] coefficients are the solution to the

autocorrelation normal equations:

and, in addition, if                                                        then the autocorrelation

matching constraint is satisfied:

Therefore:

spectrum estimation
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In summary, given a sequence of autocorrelations rX[k], k=0,1,…  p , the

MEM spectrum is computed as follows

1. the coefficients ap[k]  and  are computed using the autocorrelation normal 

equations

2. the MEM spectrum is formed using these parameters into

3. since the MEM spectrum is an all-pole power spectrum, then rX[k] satisfies the 

Yule-Walker equations

which is a recursion allowing to extrapolate the autocorrelation sequence

Final note: The MEM method attempts to extrapolate the autocorrelation 

sequence while imposing the least amount of structure on the data (i.e. it 

performs a maximum entropy extrapolation), however since it imposes an all-pole 

model on the data, unless the process is known to be consistent with the 

model, the estimated spectrum may not be very accurate.

spectrum estimation

Note: Munson Hayes provides (page 437) a Matlab 

function mem() allowing to compute the ME spectrum 
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spectrum estimation

• parametric methods
– are particularly important and advantageous when it is possible to 

incorporate a model for the process directly into the spectrum estimation

• a more accurate and higher resolution estimate is likely to be found

– the first step is to select an appropriate model for the process

• methods that are commonly used include the autoregressive (AR), moving 

average (MA), autoregressive moving average (ARMA), and harmonic (complex 

exponentials in noise)

– the second step is to find the model parameters from the data

– the final step is to estimate the power spectrum by incorporating the 

estimated parameters into the parametric form for the spectrum

– a word of caution: although it is possible to significantly improve the 

resolution of the spectrum estimate with a parametric model, unless the 

model that is used is appropriate for the process that is being analyzed, 

inaccurate or misleading estimates may be obtained
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spectrum estimation

• autoregressive spectrum estimation
– an autoregressive process, x[n], may be represented as the output of an all-pole 

filter that is driven by unit variance white noise, an estimate of the power spectrum 

is formed using the estimated parameters b[0] and a[k]

– the accuracy of PAR(ej) depends on how accurately the model parameters may be 

estimated and, more importantly, on whether or not an autoregressive model is 

consistent with the way the data is generated

The Autocorrelation Method

• in the autocorrelation method of all-pole modeling, the AR coefficients are found 

by solving the the autocorrelation normal equations
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spectrum estimation

where

after the rX[k] autocorrelations are found, then

and PAR(ej) can be obtained, this method is also known as the Yule-Walker method.

It should be noted that the Yule-Walker method (which assumes x[n] is an

autoregressive process) is equivalent to the maximum entropy method (which

assumes x[n] is Gaussian)

– since the autocorrelation matrix R is Toeplitz, the Levinson-Durbin 

recursion may be used to solve the normal equations

• the autocorrelation method generally produces a low resolution estimate (when 

compared for example to the covariance method) because, according to this method, 

a rectangular window is applied to the data when estimating the autocorrelation 

sequence

• an artifact known as spectral line splitting may occur when the autocorrelation 

method is used, it consists in a splitting of the of a single spectral peak into two 

separate and distinct peaks, this may be explained by overmodeling of x[n], i.e. 

when p is too large
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spectrum estimation

– a variation of the above autocorrelation estimate (which is biased) is the 

unbiased version:

however, in this case the autocorrelation matrix is not guaranteed to be 

positive definite and, as a consequence, the variance of the spectrum 

estimate tends to be large 

• this explains that in general the biased estimate of rX[k] is preferred over the 

unbiased estimate

The Covariance Method

• the covariance method involves finding the solution to the set of linear 

equations (whose underlying matrix is not Toeplitz)
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spectrum estimation

where

• for short data records, the covariance method generally produces higher 

resolution spectrum estimates than the autocorrelation method, when N>>p the 

effect of windowing is reduced and the difference between the two approaches 

becomes negligible (M. Hayes describes in pages 444, 445 two variations of the 

covariance method, the modified covariance method and Burg’s method which have a 

number of advantages, namely in terms of accuracy and stability)

Selecting the Model Order

• if the model order is too small, the resulting spectrum will be smoothed and will 

have a poor resolution

• if the model order is too large, then the spectrum may contain spurious peaks 

and may be affected by spectral line splitting
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spectrum estimation

• moving average spectrum estimation
– as already discussed before, a moving average process may be 

generated by filtering unit variance white noise, w[n], with an FIR filter

, the power spectrum results as

equivalently, the power spectrum, may be obtained as a function of the

autocorrelation sequence rX[k]: where rX[k]: is related 

to the filter coefficients bq[k] through the Yule-Walker equations:

therefore, given that rX[k], |k|>q, and

using a suitable estimate of the autocorrelation sequence, the power

spectrum estimate is obtained as
Note: this is equivalent to the 

Blackman -Tukey estimate 

using the rectangular window
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spectrum estimation

• autoregressive moving average spectrum estimation
– as also discussed before, an autoregressive moving average process has 

a power spectrum of the form

, the filter

having both poles and zeros, may be used to generate such power spectrum

by filtering unit variance white noise, therefore the power spectrum of ARMA

processes may be estimated using

where the AR parameters may be estimated

from the modified Yule-Walker equations and

the MA model parameters may be estimated

(for example) using Durbin’s method
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spectrum estimation

• frequency estimation
– many signals of interest (sonar, speech processing,… ) have a structure of 

complex sinusoids in white noise (w[n]):

in general the amplitudes are complex, i.e.                     where 
l

is uniformly

distributed over the interval [-, ]

the frequencies 
l

and the |A
l
| are normally (not random but are) unknown

– thus the power spectrum of x[n] consists of a set of p pulses of area 2|A
l
| 

at frequencies 
l

for l=1,2,…,p , plus the power spectrum of the white noise

– in these cases it is the estimation of the amplitudes and frequencies that is 

of interest, rather than the overall power spectrum

– we will discuss several methods of frequency estimation that are based on 

an eigendecomposition of the autocorrelation matrix into two subspaces: a 

signal subspace and a noise subspace 
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spectrum estimation

• eigendecomposition of the autocorrelation matrix
– is an approach that may be used for frequency estimation

taking as an example                                   , where                   , 1 is a

uniformly distributed random variable over the interval [-, ], and w[n] is

white noise that has variance w
2 , then

if, to simplify, P1= |A1|
2 , the autocorrelation matrix RX is

where the signal autocorrelation matrix RSIG is

and has rank one; the noise autocorrelation matrix is diagonal:
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spectrum estimation

Defining                                                          then RSIG may be written in

terms of e1 as                       ; since the rank of RSIG is one, then RSIG has

only one non-zero eigenvalue which may be found using

the non-zero eigenvalue is therefore MP1 and e1 is the corresponding

eigenvector; on the other hand, since RSIG is Hermitian, then the remaining

eigenvectors v2, v3,…, vM will be orthogonal to e1, i.e.

(recall that for a Hermitian matrix, the eigenvectors corresponding to distinct eigenvalues, are orthogonal)

if the eigenvalues of RSIG are i
SIG, then

i.e. the eigenvectors of RSIG are also the eigenvectors of RX , and the

eigenvalues of RX are
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spectrum estimation

As a result, the largest eigenvalue of RSIG is

and the remaining M-1 eigenvalues are equal to w
2. Thus, it is possible to

extract all of the parameters of interest about x[n] from the eigenvalues and

eigenvectors of RX as follows:

1. perform an eigendecomposition of the autocorrelation matrix RX, the 

largest eigenvalue is equal to MP1+w
2 and the remaining eigenvalues 

are equal to w
2

2. use the eigenvalues of RX to solve for the power P1 and noise variance:

3. determine the frequency 1 from the eigenvector vmax that is associated 

with the largest eigenvalue using, for example, the second coefficient of 

vmax (recall the definition of e1 in the previous slide), or using a more robust 

approach (see next)

Since the eigenvalues and eigenvectors may be quite sensitive to small

errors in rX[k], instead of estimating the frequency of the complex exponential

from a single eigenvector, an approach based on a pseudo-spectrum may be

more appropriate (see next).  
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spectrum estimation

If vi is a noise eigenvector of RX and therefore its eigenvalue is w
2, then the

orthogonality property                                       means that the Fourier

transform                                          must have a zero at =1, which is the

frequency of the  sinusoid we want to estimate. Therefore, if we form the

frequency estimation function (a pseudo-spectrum):

then Pi(e
j) will be very large at =1, and the location of the peak may be

used to estimate the frequency of the complex exponential. In order to avoid

the sensitivity to errors in the estimation of RX, a weighted average of all of

the noise eigenvectors delivers a more robust estimate:
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spectrum estimation

As an example, if                                        , taking N=64 values a 66

autocorrelation matrix  is estimated and an eigendecomposition is performed.

Using i=1, the average (pseudo) spectrum (evaluated using 512 points) is

and the peak clearly indicates the correct normalized frequency: ¼.

For comparison, an overlay plot of the individual five pseudo spectra is

Note: the Matlab code 

implementing this example 

is in the next slide
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spectrum estimation

The previous figures have been generated using the following Matlab code

N=64; n=[0:N-1]; M=6;

phi=2*(rand-0.5)*pi; omega=pi/4;

x=4*exp(j*(n*omega+phi))+randn(1,N);

R=covar(x,M);

[V,D]=eig(R);

for k=1:M, diagonal(k)=D(k,k); end

[sorteddiag indx]=sort(diagonal,'descend');

% indx(1) has the largest

xfreq=[0:511]*2/512;

figure(1); accffft=zeros(512,1);

for k=2:M

hold on

plot(xfreq,20*log10(1./abs(fft(V(:,indx(k)),512))));

hold off

accffft=accffft+abs(fft(V(:,indx(k)),512)).^2;

end

xlabel('Normalized Frequency (\omega/\pi)')

ylabel('Magnitude (dB)');

figure(2)

plot(xfreq,10*log10(1./accffft))

xlabel('Normalized Frequency (\omega/\pi)')

ylabel('Magnitude (dB)');
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spectrum estimation

As a generalization, we consider the case of a wide-sense stationary process

consisting of p distinct complex exponentials in white noise. The MM

autocorrelation sequence is

where P
l
= |A

l
|2. The autocorrelation matrix can be written as

where

consists of a set of p linearly independent vectors. The above equation may

be written as                               where                           is an Mp matrix

containing the p signal vectors and P=diag{P1, P2, …, Pp}.

Since the eigenvalues of RX are                  where i
SIG are the eigenvalues 

of RSIG, and since matrix RSIG is a matrix of rank p, then, the first group of p

eigenvalues of Rx are greater than w
2 and the second group with the last

M-p eigenvalues are equal (in theory) to w
2.
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The eigenvectors of the first group are the signal eigenvectors and the

eigenvectors of the second group are the noise eigenvectors. Assuming

eigenvectors are normalized to have unit norm, then the spectral theorem

may be used to decompose RX

The orthogonality of the signal and noise subspaces may be used to

estimate the frequencies of the complex exponentials. Each signal vector e1,

…, ep, is orthogonal to each of the noise eigenvectors:  

Therefore, the frequencies may be estimated using a frequency estimation

function such as                                                   
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• Pisarenko Harmonic Decomposition
– In 1973 Pisarenko demonstrated that the frequencies of complex 

exponentials in white noise could be derived from the eigenvector 

corresponding to the minimum eigenvalue of the autocorrelation matrix

– In the Pisarenko harmonic decomposition, x[n] is a sum of p complex 

exponentials in white noise and the number of complex exponentials is 

known, it is also assumed that p+1 values of the autocorrelation 

sequence are either known or have been estimated

– the (p+1)(p+1) autocorrelation matrix implies that the dimension of the 

noise subspace is equal to one, and is spanned by the eigenvector 

corresponding to the minimum eigenvalue, min= w
2, if the 

corresponding eigenvector is vmin, then vmin will be orthogonal to each 

one of the signal eigenvectors e
l

thus, Vmin(e
j) is equal to zero at each of the harmonic complex exponential

frequencies =
l

for l=1,2,…,p
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This result means that the Z transform of the noise eigenvector (or eigenfilter),

has p zeros on the unit circle

and, therefore, the frequencies of the complex exponentials may be

extracted from the roots of the eigenfilter; as an alternative (as and seen

before), the frequency estimation function, which is also known as

eigenspectrum or pseudospectrum (because it has the form of a power spectrum

but it does not contain any information about the power in the complex exponentials): 

will be large (in theory, infinite) at the frequencies of the complex exponentials,

therefore the peaks of PPHD(ej) may be used to estimate the frequencies of

the complex exponentials
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Once the frequencies of the complex exponentials have been found, the

powers Pi may be determined from the eigenvalues of RX. Assuming that the

signal subspace vectors v1, v2, …, vp have been normalized so that vi
Hvi=1,

then

using (slide 53)                                                         , then

and, therefore                                                           ; in addition, recognizing

that                                                                               , the previous equation

may be written as
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Or, in a matrix form:

which denotes a set of p linear equations in the p unknowns, Pk (which may

be solved for the parameters Pk) 

Despite its elegance, the Pisarenko harmonic decomposition is not

commonly used in practice because

• it requires that the number of complex exponentials is exactly known,

• the frequency estimates are biased in case the additive noise is not white

Note: Munson Hayes provides (page 461) a Matlab function phd() allowing 

to estimate the frequencies of p complex exponentials in white noise 
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• MULtiple SIgnal Classification method (MUSIC)
– The MUSIC algorithm algorithm is a frequency estimation technique that 

is a generalization of the Pisarenko algorithm

Assuming that x[n] is a random process consisting of p complex exponentials

in white noise having variance w
2, an MM correlation matrix RX with

M>(p+1), eigenvalues arranged in decreasing order 1 2 …  M and

corresponding eigenvectors v1, v2, …, vM;

the eigenvectors may be separated into two groups: the p eigenvectors

corresponding to the p largest eigenvalues (signal subspace), and the M-p

remaining eigenvectors (noise subspace) corresponding to eigenvalues that,

in practice (due to inexact autocorrelations), are approximately equal to w
2, an

estimate of w
2 may be obtained by averaging the M-p smallest eigenvalues 
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The eigenvectors of RX are of length M, which means each noise eigenfilter

has M-1 roots:

p roots will lie on the unit circle at the frequencies of the complex

exponentials, and the eigenspectrum associated with the noise eigenvector

vi will exhibit sharp peaks at the frequencies of the complex exponentials

there are two sources of inaccuracies:

1. the remaining M-p-1 zeros may lie anywhere in the z plane and, if close to the 

unit circle, they may give rise to spurious peaks, in the eigenspectrum,

2. due to inexact autocorrelations, the zeros of Vi(z) that should be on the unit 

circle, may not remain there

Therefore, when only one noise eigenvector is used to estimate the complex

exponential frequencies, there may be some ambiguity in distinguishing the 

desired peaks from the spurious ones
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Since the spurious peaks that are introduced from each of the noise

subspace filters tend to occur at different frequencies (as already illustrated

before (slide 52) ), their effect is reduced in the MUSIC algorithm by averaging:

The frequencies of the complex exponentials are taken as the locations of

the p largests peaks in VMU(ej); alternatively the root MUSIC method may be

used: since the z-transform equivalent of PMU(ej) is PMU(z): 

then, the frequency estimates may be taken as the angles of the p roots of

the denominator polynomial of PMU(z); in either case, the power of each

complex exponential may then be found using the matrix as in slide 58

Note: Munson Hayes provides (page 465) a Matlab function music()

allowing to estimate the frequencies of p complex exponentials in white noise 
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• other eigenvector methods
other methods have been proposed for estimating the frequencies of

complex exponentials in noise, e.g. the EigenVector method (EV) uses

where i is the eigenvalue associated with the eigenvector vi ; another

eigendecomposition-based method is the minimum norm algorithm that uses

a single vector a that is constrained to lie in the noise subspace and is

subject to the following contraints

1. vector a lies in the noise subspace (ensures that p roots of A(z) lie on the unit circle)

2. vector a has minimum norm (ensures that the spurious roots of H(z) lie inside the unit 

circle)

3. the first element of a is unity (ensures that the zero vector is not a solution)



64

P
D

E
E

C
, 

S
ig

n
a

l 
P

ro
ce

ss
in

g
, 
w

ee
k

s 
4

-5
F

E
U

P,
 O

ct
 2

2
-2

9
 ,

 2
0

2
4

© AJF

spectrum estimation

• Principal Components Spectrum Estimation
In previous methods, referred to as noise subspace methods (because only the 

vectors that lie in the noise subspace are used), the orthogonality between 

signal and noise subspaces was exploited to estimate the frequencies of 

p complex exponentials in noise

Another class of methods exits, referred to as signal subspace methods, that 

are base on a principal components analysis of the autocorrelation 

matrix

As in the MUSIC method, we assume that x[n] is a random process 

consisting of p complex exponentials in white noise having variance w
2, 

and that RX is an MM correlation matrix with M>(p+1), whose 

eigenvalues are arranged in decreasing order 1 2 …  M (and the 

corresponding eigenvectors are v1, v2, …, vM)

The eigendecomposition of RX leads to 
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By retaining only the principal components of RX, i.e. the principal 

eigenvectors of RX, a reduced rank approximation to RX is formed:

this matrix has rank p and and may be used in a principal components-

based method such as the Blackman-Tukey, minimum variance method, 

or maximum entropy method, in order to estimate the power spectrum

Blackman-Tukey frequency estimation

The power spectrum is estimated as                                             ; if w[n] is the

rectangular window, then the blackman-Tukey estimate may be written as

an eigendecomposition of the autocorrelation matrix leads to

(?)
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A principal components version of this power spectrum estimate is

Minimum variance frequency estimation

As indicated in slide 33, if rX[k] is an autocorrelation sequence of a random

process for lags |k|M, the Mth-order minimum variance spectrum estimate is

The eigendecomposition of RX leads to the inverse RX
-1

As a result, retaining only the first p principal components of RX
-1 leads to the

principal components minimum variance estimate

Note: this provides an estimate of the power 

spectrum whereas a similar result related to the 

EigenVector method (slide 63) only provides a 

pseudo-spectrum allowing to estimate the 

frequencies of complex exponentials
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Autoregressive frequency estimation

Autoregressive spectrum estimation using the autocorrelation, covariance, or

modified covariance algorithms, involves finding the solution to a set of linear

equations of the form                       ; RX is an (M+1)(M+1) autocorrelation

matrix, hence                        which leads to the power spectrum estimate

where |b[0]|2=M , however since x[n] consists of p

complex sinusoids, then a principal components solution for aM is

which leads to Note: even if the order of the autocorrelation vector 

increases, only p principal eigenvectors and 

eigenvalues are used in the spectrum estimate, 

which avoids the increase spurious peaks due the 

noise eigenvectors of the autocorrelation matrix 
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Summary and word of caution

Non-parametric methods

• the periodogram is not a consistent power spectrum estimator

• periodogram averaging or smoothing provides a consistent estimate of the 

power spectrum but has inherent difficulties dealing with short data records

• have the advantage that they can be used with any type of process

• periodogram-based frequency estimation is possible by taking advantage of 

the knowledge of the data window

• minimum variance and maximum entropy methods seek to improve the 

resolution and “whiteness” of periodogram-based methods, respectively

Parametric methods

• presume a priori information concerning the model that explains the data

• after the parameters have been found, they can be incorporated into the 

parametric form for the spectrum

• unless the model that is used is consistent with the data that is analysed, 

inaccurate or misleading spectrum estimates may result

Frequency and spectrum estimation using eigendecomposition

• frequency (and possibly power) estimation using the pseudospectrum takes 

advantage of the fact that signal and noise subspaces are orthogonal

• frequency and spectrum estimation using principal components analysis use a 

reduced rank approximation to the autocorrelation matrix 


