Data Preprocessing

Inês Dutra (with some material from Alípio Jorge)

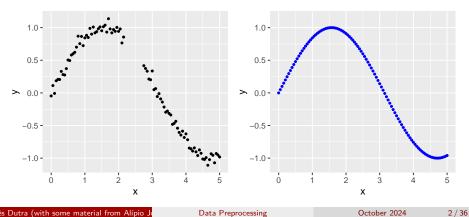
October 2024

Inês Dutra (with some material from Alípio Jo

Data Preprocessing

Major tasks

- Data cleaning
 - filling missing values
 - smoothing noise
 - removing outliers
 - resolving inconsistencies



Inês Dutra (with some material from Alípio Jo

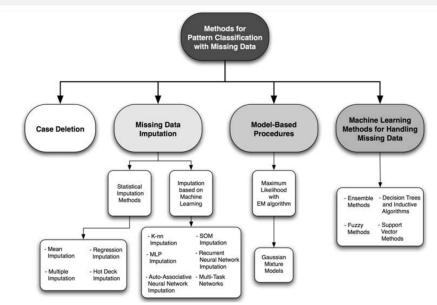
Data integration

- You want to predict your customers preferences
 - customer data
 - products data
 - sales data
 - reviews
 - images from the products
 - posts on facebook
 - weather data

- Missing Values is perhaps the most common problem in RWD
- According to Rubin (1976), every data point has some likelihood of being missing
- The theory leads to the following categories:
 - MCAR: Missing Completey At Random, if the probability of missing is the same for each case
 - MAR: Missing At Random, if the probability of being missing is the same only within groups
 - MNAR (or NMAR): Missing Not At Random, if neither MCAR nor MAR holds

4/36

- What to do?
 - Nothing
 - Ignore the attribute
 - Ignore the tuple
 - Impute values (fill in)
 - (a lot to be said)



Inês Dutra (with some material from Alípio Jo

Data Preprocessing

- if the method is robust to missing data and the amount of missing data is not too high
 - do Nothing
- else
 - if only a few cases have problems
 - ignore the cases
 - if the problem is on discardable attributes
 - ignore the attribute
 - if missing values persist
 - try value imputation

Always be very careful when you transform the data set

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
NA	36	Μ	manager	59000
Rui	27	Μ	NA	27000
Sofia	NA	F	manager	58000
Ana	48	F	CEO	77500

• Do Nothing

- the Name column
- Gender?

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
NA	36	Μ	manager	59000
Rui	27	Μ	NA	27000
Sofia	NA	F	manager	58000
Ana	48	F	CEO	77500

- Age?
- Use a global constant
 - pro: easy
 - cons: data bias, may affect inference

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
NA	36	Μ	manager	59000
Rui	27	Μ	NA	27000
Sofia	NA	F	manager	58000
Ana	48	F	CEO	77500

- Position, Age
- Use a measure of central tendency
 - mean, median, mode
 - pros: easy, gets the most likely value
 - cons: distorts the distribution
 - e.g.: average keeps average but affects variance

10/36

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
NA	36	Μ	manager	59000
Rui	27	Μ	NA	27000
Sofia	NA	F	manager	58000
Ana	48	F	CEO	77500

- Age, Position
- Use a measure of central tendency taken from same group or same class
 - pros: varied values imputed
 - cons: may still be too insensitive

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
NA	36	Μ	manager	59000
Rui	27	Μ	NA	27000
Sofia	NA	F	manager	58000
Ana	48	F	CEO	77500

- Age, Position
- Use a measure of central tendency using the **most likely** value for that case
 - e.g.: from *neighbours*, or using linear regression
 - pros: varied values imputed,
 - cons: needs processing, depends on distance measure and parameters

Missingness Indicator Variable

One simple way to handle missingness in a variable, X_j , is to impute a value (like 0 or $\overline{X_j}$), then create a new variable, $X_{j,miss}$, that indicates this observation had a missing value. If X_j is categorical then just impute 0.

Then include both $X_{j,miss}$ and X_j as predictors in any model.

Illustration is to the right.

<i>X</i> ₁	<i>X</i> ₂	X ₁ *	X_2^*	$X_{1,miss}$	$X_{2,miss}$
10		10	0	0	1
5	1	5	1	0	0
21	0	21	0	0	0
15	0	15	0	0	0
16		16	0	0	1
		0	0	1	1
21	1	21	1	0	0
12	0	12	0	0	0
	1	0	1	1	0

 $(source: \ https://harvard-iacs.github.io/2020-CS109A/lectures/lecture19/slides/Lecture19_Missingdata.pdf)$

Noisy Data

Noise

- Random error or variance in a measured variable
- Smoothing
 - assume a value is always similar to neighbors
 - you replace values (stronger than imputation)
- Outliers
 - can be smoothed away if we assume they are noise
- Be very careful
 - do not smooth legitimate data (unless it helps)

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
José	36	Μ	manager	59000
Rui	41	Μ	manager	57000
Sofia	105	F	manager	58000
Ana	28	F	assistant	28500

• Age=105 is an **outlier**

- Binning: replace each value in group by the group mean
- average of Age for each Position

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
José	36	Μ	manager	59000
Rui	41	Μ	manager	57000
Sofia	105	F	manager	58000
Ana	28	F	assistant	28500

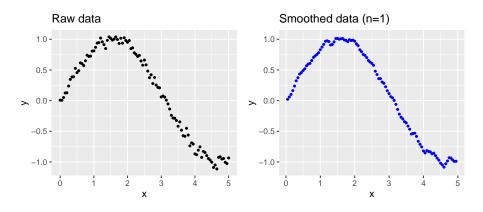
Regression

- try to predict 'Age' from the other attributes
- replace the original values with the predicted ones
- may lose too much information

Name	Age	Gender	Position	Salary
Manuel	25	М	assistant	23000
José	36	Μ	manager	59000
Rui	41	Μ	manager	57000
Sofia	105	F	manager	58000
Ana	28	F	assistant	28500

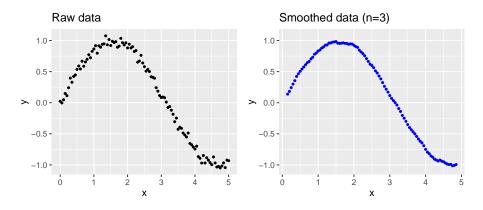
• Age=105 is an outlier

- can be detected with clustering or using the IQR rule
- can be replaced by the mean age of manager
- i.e., detect outliers and replace them by a sensible mean



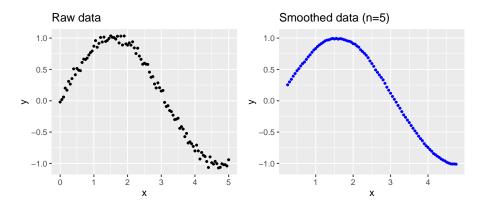
• Smoothing with moving average

- replace each value y_i with $average(y_j), j = i n, \dots, i$
- the larger the *n*, the smoother the line
- Above n = 1



• Smoothing with moving average

- replace each value y_i with $average(y_j), j = i n, \dots, i$
- the larger the *n*, the smoother the line
- Above n = 3



• Smoothing with moving average

- replace each value y_i with $average(y_j), j = i n, \dots, i$
- the larger the *n*, the smoother the line
- Above n = 5

Data integration

- The same object can have different representations
 - customer in social network an in sales data
 - two companies merging
 - entity identification problem
- There may be redundant variables
 - detect redundancy
 - remove redundant variables

Redundancy analysis

- We can measure the "similarity" of two variables
 - Nominal: χ^2 statistical test
 - if the null hypothesis (variables are correlated) is accepted, one of the variables is redundant
 - if rejected, the variables are independent

$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

- o are the observed frequencies, e are the expected - high values of the χ_2 statistic mean ${\bf independence}$

$$e_{ij} = \frac{\#(A=a_i) \times \#(B=b_j)}{n}$$

Example of step-by-step calculation

Redundancy analysis

- We can measure the "similarity" of two variables
 - Numerical: Pearson correlation
 - $\bullet\,$ correlation is between -1 and 1
 - if correlation is close to zero, the variables are independent
- Example: taxes payed and spending
 - highly correlated
 - we cannot infer causality
 - A pays a lot of taxes because she spends a lot (false)
 - A spends a lot because she pays a lot of taxes (false)
- What is the relation between correlation and Covariance?

Other operations in data integration

• Eliminate duplicate tuples

• the same customer appears in the DB (from two different sources)

Detect conflicting values

- different representations, units, encondings
- e.g. sales in Euros and in Dollars
- e.g. sales per day and sales per week

24 / 36

Data reduction: Dimensionality reduction

reduce the number of variables

• Principal Components Analysis (PCA)

- finds new variables that
 - are much fewer than original ones
 - each is a linear combination of the original ones
 - explain most but not all of what is observed
- cons: new variables may not be interpretable

Data Reduction: Dimensionality reduction

• reduce the number of variables

Feature selection

- e.g. we want to predict if a customer is leaving a mobile operator (churn)
- not all features are relevant for this problem
- a good feature is correlated with the target variable

Techniques

- Eliminate features with low correlation
 - does not consider joint effects of variables
- Stepwise forward selection
 - start with zero features, add the best feature, keep adding
 - stop when improvement stops
- Stepwise backward elimination
 - start with all the features, ...
- (among others)

References

- Han, Kamber & Pei, Data Mining Concepts and Techniques, Morgan Kaufman.
- García-Laencina, P.J., Sancho-Gómez, J. & Figueiras-Vidal, A.R. Pattern classification with missing data: a review. Neural Comput & Applic 19, 263–282 (2010).
- Pavel Horbonos, A brief guide to data imputation with Python and R: Make the data clean, Towards Data Science (2020)
- Stef van Buuren, Flexible Imputation of Missing Data
- Excel errors in scientific papers