
Semana 3: Simetrias e Trignometria

1. Identifique as simetrias da figura abaixo:

- 2. Sabe-se que o ponto $P=\left(\frac{(\sqrt{3})}{2},y\right)$ do circulo unitário pertence:
 - a) ao primeiro quadrante;
 - b) ao quarto quadrante.

Indique em cada um dos casos a sua ordenada.

- 3. Exprima:
 - (a) $\pi/3$ radianos em graus;
 - (b) 30° em radianos.
- 4. Seja P um ponto do circulo unitário. Encontre as coordenadas de P=(x,y) em cada um dos casos:
 - a) $x = \frac{4}{5} e y \ge 0;$
 - b) $y = \frac{2}{2} e x < 0;$
 - c) $x = -\frac{\sqrt{2}}{3}$ e P está abaixo do eixo dos xx's.
- 5. Determine:

a)
$$\cos\left(\frac{2\pi}{3}\right)$$
;

e) sen
$$\left(\frac{2\pi}{3}\right)$$
;

i)
$$\cos^2\left(\frac{2\pi}{3}\right) + \sin^2\left(\frac{2\pi}{3}\right)$$
;

b) tg
$$\left(-\frac{\pi}{3}\right)$$
;

f) tg
$$\left(\frac{\pi}{3}\right)$$
;

$$j) \cos^2\left(-\frac{2\pi}{3}\right) + \sin^2\left(\frac{2\pi}{3}\right);$$

c) sen
$$\left(\frac{19\pi}{4}\right)$$
;

g) sen
$$\left(-\frac{19\pi}{4}\right)$$

g) sen
$$\left(-\frac{19\pi}{4}\right)$$
; k) $\cos^2\left(-\frac{2\pi}{3}\right) + \sin^2\left(-\frac{2\pi}{3}\right)$;

d) cotg
$$\left(\frac{\pi}{3}\right)$$
;

h)
$$\cot \left(\frac{-\pi}{3}\right)$$

h)
$$\cot\left(\frac{-\pi}{3}\right)$$
; l) $\cos^2\left(\frac{2\pi}{3}\right) + \sin^2\left(-\frac{2\pi}{3}\right)$.

- 6. Sabe-se que $\cos(t) = \frac{3}{5}$ para t no quarto quadrante. Determine $\sin(t), \cos(t), \operatorname{tg}(t)$ e $\cot(t)$.
- 7. Sabendo que $\operatorname{tg}(\alpha) = -\frac{\sqrt{5}}{2}$ e que $-\frac{\pi}{2} < \alpha < 0$. Determine $\operatorname{sen}(\alpha/2), \operatorname{sen}(2\alpha), \cos(\frac{\alpha}{2})$.
- 8. Determine sen(t), cos(t), tg(t) e cotg(t) se:

a)
$$t = \frac{5\pi}{6}$$
;

c)
$$t = \frac{2\pi}{3}$$

a)
$$t = \frac{5\pi}{6}$$
; c) $t = \frac{2\pi}{3}$; e) $t = \frac{7\pi}{6}$; g) $t = \frac{7\pi}{4}$; i) $t = \frac{15\pi}{6}$

g)
$$t = \frac{7\pi}{4}$$
:

$$t = \frac{15\pi}{6}$$

b)
$$t = \frac{5\pi}{3}$$
;

d)
$$t = -\frac{\pi}{6}$$

f)
$$t = \frac{2\pi}{6}$$

h)
$$t = \frac{3\pi}{4}$$
;

b)
$$t = \frac{5\pi}{3}$$
; d) $t = -\frac{\pi}{6}$; f) $t = \frac{2\pi}{6}$; h) $t = \frac{3\pi}{4}$; j) $t = \frac{10\pi}{6}$.

- 9. Considere o triângulo retângulo ABC com |AB|=3, |BC|=4 e |AC|=5 e o ângulo ϕ oposto ao lado AB. Determine $sen(\phi)$, $cos(\phi)$ e $tg(\phi)$.
- 10. Calcule $sen(\alpha + \beta)$ e $sen(\alpha \beta)$ sabendo que α e β são ângulos do 3° e do 4° quadrantes, respetivamente, e que $sen(3\pi + \alpha) = \frac{\sqrt{5}}{5}$ e $sen(\frac{\pi}{2} + \beta) = \frac{1}{2}$.

- 11. Considere o retângulo com vértices $V_1(1,0)$, $V_2(1,1)$, $V_3(3,1)$ e $V_4(3,0)$. Desenhe a sua imagem pelas seguintes simetrias:
 - (a) translação pelo vetor (2,5);
 - (b) translação pelo vetor $\overrightarrow{V_1V_2}$;
 - (c) rotação de 45^{o} com centro V_{1} no sentido direto;
 - (d) reflexão no eixo dos xx;
 - (e) reflexão na reta x = 2;
 - (f) reflexão na reta y = x;
 - (g) reflexão deslizante segundo a reta y=x e vetor (2,2).