Data Mining: Data

Lecture Notes for Chapter 2

Introduction to Data Mining , 2nd Edition by Tan, Steinbach, Kumar

01/27/2021

Similarity and Dissimilarity Measures

- Similarity measure
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity measure
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies

Proximity refers to a similarity or dissimilarity

01/27/2021

Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity between two objects, *x* and *y*, with respect to a single, simple attribute.

Attribute	Dissimilarity	Similarity
Type		
Nominal	$d = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$	$s = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$
Ordinal	d = x - y /(n - 1) (values mapped to integers 0 to $n-1$, where n is the number of values)	s = 1 - d
Interval or Ratio	d = x - y	$s = -d, \ s = \frac{1}{1+d}, \ s = e^{-d},$ $s = 1 - \frac{d - \min d}{\max d - \min d}$

Euclidean Distance

Euclidean Distance

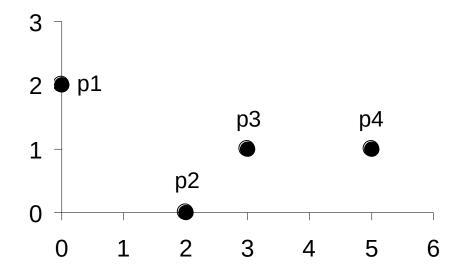
$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

where *n* is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects **x** and **y**.

Standardization is necessary, if scales differ.

01/27/2021

Euclidean Distance



point	X	у
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	р4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

5

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

Where *r* is a parameter, *n* is the number of dimensions (attributes) and x_k and y_k are, respectively, the k^{th} attributes (components) or data objects *x* and *y*.

01/27/2021

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this for binary vectors is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \rightarrow \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with n, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0
L2	p1	p2	р3	p4
p1	PI 0	2.828	3.162	5.099
p1	2.828	0	1.414	3.162
рЗ	3.162	1.414	0	2
р4	5.099	3.162	2	0
L∞	p1	p2	р3	p4
	P1 0	P ²	P5 3	
p1				5
<u>p2</u>	2	0	1	3
p3	3	1	0	2
p4	5	3	2	0

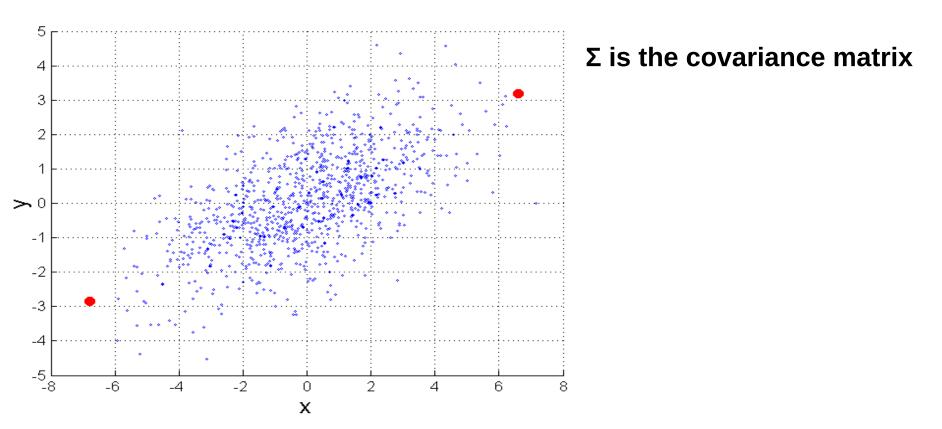
point	X	у
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Distance Matrix

01/27/2021

Mahalanobis Distance

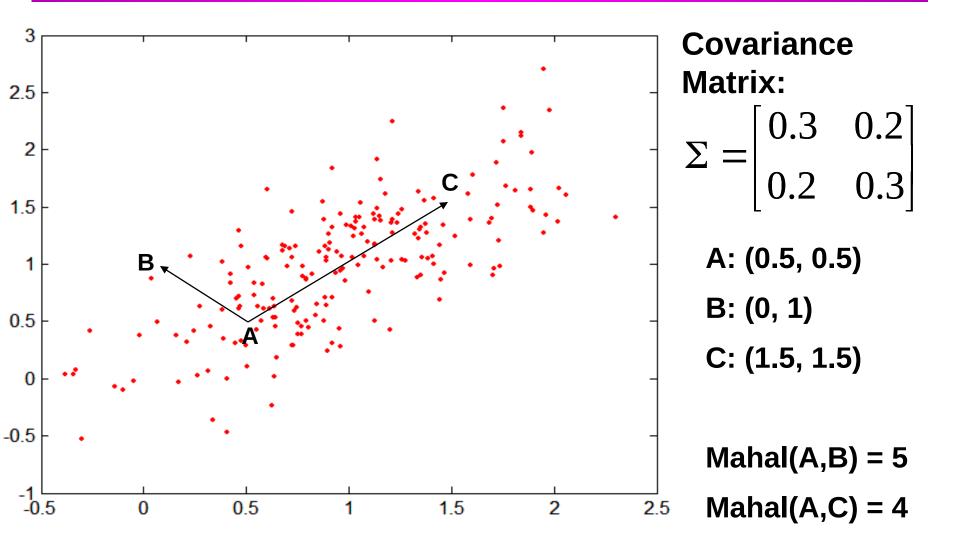
mahalanobis(x,y) = $((x - y)^T \Sigma^{-1} (x - y))^{0.5}$



For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

01/27/2021

Mahalanobis Distance



Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all x and y and $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$.
 - 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)
 - 3. $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ for all points \mathbf{x}, \mathbf{y} , and \mathbf{z} . (Triangle Inequality)

where $d(\mathbf{x}, \mathbf{y})$ is the distance (dissimilarity) between points (data objects), \mathbf{x} and \mathbf{y} .

A distance that satisfies these properties is a metric

01/27/2021

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - 1. $s(\mathbf{x}, \mathbf{y}) = 1$ (or maximum similarity) only if $\mathbf{x} = \mathbf{y}$. (does not always hold, e.g., cosine)
 - 2. $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$ for all \mathbf{x} and \mathbf{y} . (Symmetry)

where $s(\mathbf{x}, \mathbf{y})$ is the similarity between points (data objects), \mathbf{x} and \mathbf{y} .

01/27/2021

Similarity Between Binary Vectors

- Common situation is that objects, x and y, have only binary attributes
- Compute similarities using the following quantities f_{01} = the number of attributes where x was 0 and y was 1 f_{10} = the number of attributes where x was 1 and y was 0 f_{00} = the number of attributes where x was 0 and y was 0 f_{11} = the number of attributes where x was 1 and y was 1
- Simple Matching and Jaccard Coefficients SMC = number of matches / number of attributes = $(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$
 - J = number of 11 matches / number of non-zero attributes = $(f_{11}) / (f_{01} + f_{10} + f_{11})$

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

13

SMC versus Jaccard: Example

 $f_{01} = 2$ (the number of attributes where **x** was 0 and **y** was 1) $f_{10} = 1$ (the number of attributes where **x** was 1 and **y** was 0) $f_{00} = 7$ (the number of attributes where **x** was 0 and **y** was 0) $f_{11} = 0$ (the number of attributes where **x** was 1 and **y** was 1)

SMC =
$$(f_{11} + f_{00}) / (f_{01} + f_{10} + f_{11} + f_{00})$$

= $(0+7) / (2+1+0+7) = 0.7$

$$J = (f_{11}) / (f_{01} + f_{10} + f_{11}) = 0 / (2 + 1 + 0) = 0$$

01/27/2021

Cosine Similarity

If \mathbf{d}_1 and \mathbf{d}_2 are two document vectors, then

 $\cos(\mathbf{d}_1, \mathbf{d}_2) = \langle \mathbf{d}_1, \mathbf{d}_2 \rangle / \|\mathbf{d}_1\| \|\mathbf{d}_2\|$,

where $\langle \mathbf{d}_1, \mathbf{d}_2 \rangle$ indicates inner product or vector dot product of vectors, \mathbf{d}_1 and \mathbf{d}_2 , and $\|\mathbf{d}\|$ is the length of vector \mathbf{d} .

• Example:

 $\mathbf{d}_1 = 320500200$

 $\mathbf{d}_2 = \mathbf{1} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{1} \mathbf{0} \mathbf{2}$

<**d**₁, **d**2>= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

 $\|\mathbf{d}_1\| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)^{0.5} = (42)^{0.5} = 6.481$

 $\|\mathbf{d}_2\| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)^{0.5} = (6)^{0.5} = 2.449$

 $\cos(\mathbf{d}_{1}, \mathbf{d}_{2}) = 0.3150$

01/27/2021

Correlation measures the linear relationship between objects

 $\operatorname{corr}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{covariance}(\mathbf{x}, \mathbf{y})}{\operatorname{standard_deviation}(\mathbf{x}) * \operatorname{standard_deviation}(\mathbf{y})} = \frac{s_{xy}}{s_x \ s_y}, \quad (2.11)$

where we are using the following standard statistical notation and definitions

covariance
$$(\mathbf{x}, \mathbf{y}) = s_{xy} = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$$
 (2.12)

standard_deviation(
$$\mathbf{x}$$
) = $s_x = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (x_k - \overline{x})^2}$
standard_deviation(\mathbf{y}) = $s_y = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (y_k - \overline{y})^2}$

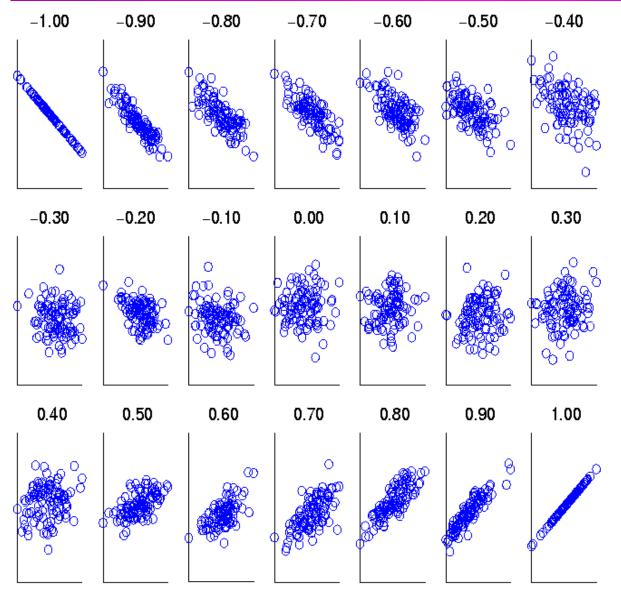
$$\overline{x} = \frac{1}{n} \sum_{k=1}^{n} x_k \text{ is the mean of } \mathbf{x}$$
$$\overline{y} = \frac{1}{n} \sum_{k=1}^{n} y_k \text{ is the mean of } \mathbf{y}$$

01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

16

Visually Evaluating Correlation

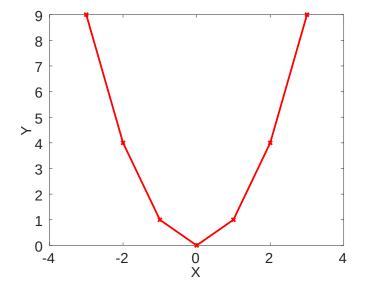


Scatter plots showing the similarity from -1 to 1.

Tan, Steinbach, Karpatne, Kumar

Drawback of Correlation

 $y_i = x_i^2$



mean(x) = 0, mean(y) = 4
std(x) = 2.16, std(y) = 3.74

corr = (-3)(5)+(-2)(0)+(-1)(-3)+(0)(-4)+(1)(-3)+(2)(0)+3(5) / (6 * 2.16 * 3.74))= 0

01/27/2021

Correlation vs Cosine vs Euclidean Distance

- Compare the three proximity measures according to their behavior under variable transformation
 - scaling: multiplication by a value
 - translation: adding a constant

Property	Cosine	Correlation	Euclidean Distance
Invariant to scaling (multiplication)	Yes	Yes	No
Invariant to translation (addition)	No	Yes	No

- Consider the example
 - $\mathbf{x} = (1, 2, 4, 3, 0, 0, 0), \mathbf{y} = (1, 2, 3, 4, 0, 0, 0)$
 - $y_s = y * 2$ (scaled version of y), $y_t = y + 5$ (translated version)

Measure	(x , y)	(x , y _s)	(X , y _t)
Cosine	0.9667	0.9667	0.7940
Correlation	0.9429	0.9429	0.9429
Euclidean Distance	1.4142	5.8310	14.2127

01/27/2021

Correlation vs cosine vs Euclidean distance

- Choice of the right proximity measure depends on the domain
- What is the correct choice of proximity measure for the following situations?
 - Comparing documents using the frequencies of words
 - Documents are considered similar if the word frequencies are similar
 - Comparing the temperature in Celsius of two locations
 - Two locations are considered similar if the temperatures are similar in magnitude
 - Comparing two time series of temperature measured in Celsius
 - Two time series are considered similar if their "shape" is similar, i.e., they vary in the same way over time, achieving minimums and maximums at similar times, etc.

Comparison of Proximity Measures

Domain of application

- Similarity measures tend to be specific to the type of attribute and data
- Record data, images, graphs, sequences, 3D-protein structure, etc. tend to have different measures
- However, one can talk about various properties that you would like a proximity measure to have
 - Symmetry is a common one
 - Tolerance to noise and outliers is another
 - Ability to find more types of patterns?
 - Many others possible

01/27/2021

The measure must be applicable to the data and produce results that agree with domain knowledge

Introduction to Data Mining, 2nd Editio	r
Tan, Steinbach, Karpatne, Kumar	

Information Based Measures

- Information theory is a well-developed and fundamental discipline with broad applications
- Some similarity measures are based on information theory
 - Mutual information in various versions
 - Maximal Information Coefficient (MIC) and related measures
 - General and can handle non-linear relationships
 - Can be complicated and time intensive to compute

Information and Probability

- Information relates to possible outcomes of an event
 - transmission of a message, flip of a coin, or measurement of a piece of data

 The more certain an outcome, the less information that it contains and vice-versa

- For example, if a coin has two heads, then an outcome of heads (biased coin) provides no information
- More quantitatively, the information is related to the probability of an outcome

If the event is highly likely (close to 1), the information gained is small. If the event is unlikely (close to 0), the information gained is large.

Entropy is the commonly used measure

01/27/2021

Entropy

For

- a variable (event), X,
- with *n* possible values (outcomes), $x_1, x_2, ..., x_n$
- each outcome having probability, $p_1, p_2 \dots, p_n$
- the entropy of X, H(X), is given by

$$H(X) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

- Entropy is between 0 and log₂n and is measured in bits
 - Thus, entropy is a measure of how many bits it takes to represent an observation of X on average

01/27/2021

Entropy Examples

• For a coin with probability p of heads and probability q = 1 - p of tails

 $H = -p\log_2 p - q\log_2 q$

- For p = 0.5, q = 0.5 (fair coin) H = 1

- For
$$p = 1$$
 or $q = 1$, $H = 0$

• What is the entropy of a fair four-sided die?

01/27/2021

Entropy for Sample Data: Example

Hair Color	Count	p	-plog ₂ p
Black	75	0.75	0.3113
Brown	15	0.15	0.4105
Blond	5	0.05	0.2161
Red	0	0.00	0
Other	5	0.05	0.2161
Total	100	1.0	1.1540

Maximum entropy would happen if hair colors were equally likely \rightarrow p(color) = 1/5)

$$H_{max} = -5 \times (1/5 \log_2 1/5) = \log_2 5 = 2.32$$

01/27/2021

Entropy for Sample Data

Suppose we have

- a number of observations (m) of some attribute, X,
 e.g., the hair color of students in the class,
- where there are n different possible values
- And the number of observation in the *i*th category is m_i
- Then, for this sample

$$H(X) = -\sum_{i=1}^{n} \frac{m_i}{m} \log_2 \frac{m_i}{m}$$

For continuous data, the calculation is harder

Mutual Information

Information one variable provides about another

Formally, I(X,Y) = H(X) + H(Y) - H(X,Y), where

H(X,Y) is the joint entropy of X and Y,

$$H(X,Y) = -\sum_{x\in X}\sum_{y\in Y} p(x,y)\log_2 p(x,y)$$

Where p(x,y) is the probability that the x value of X and the y value of Y occur together

For discrete variables, this is easy to compute

• Maximum mutual information for discrete variables is $\log_2 \min(n_X, n_Y)$, where $n_X(n_Y)$ is the number of distinct values of X(Y)

01/27/2021	
------------	--

Mutual Information Example

Student Status	Count	р	-plog ₂ p
Undergrad	45	0.45	0.5184
Grad	55	0.55	0.4744
Total	100	1.00	0.9928

Grade	Count	p	-plog ₂ p
А	35	0.35	0.5301
В	50	0.50	0.5000
С	15	0.15	0.4105
Total	100	1.00	1.4406

Student Status	Grade	Count	р	-plog ₂ p
Undergrad	А	5	0.05	0.2161
Undergrad	В	30	0.30	0.5211
Undergrad	С	10	0.10	0.3322
Grad	А	30	0.30	0.5211
Grad	В	20	0.20	0.4644
Grad	С	5	0.05	0.2161
Total		100	1.00	2.2710

Mutual information of Student Status and Grade = 0.9928 + 1.4406 - 2.2710 = 0.1624

Maximal Information Coefficient

- Reshef, David N., Yakir A. Reshef, Hilary K. Finucane, Sharon R. Grossman, Gilean McVean, Peter J. Turnbaugh, Eric S. Lander, Michael Mitzenmacher, and Pardis C. Sabeti. "Detecting novel associations in large data sets." *science* 334, no. 6062 (2011): 1518-1524.
- Applies mutual information to two continuous variables
- Consider the possible binnings of the variables into discrete categories
 - $n_X \times n_Y \leq N^{0.6}$ where

• n_X is the number of values of X

 $\bullet n_Y$ is the number of values of *Y*

 \bullet *N* is the number of samples (observations, data objects)

- Compute the mutual information
 - Normalized by $\log_2 \min(n_x, n_y)$
- Take the highest value

01/27/2021

General Approach for Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed.
- 1: For the k^{th} attribute, compute a similarity, $s_k(\mathbf{x}, \mathbf{y})$, in the range [0, 1].
- 2: Define an indicator variable, δ_k , for the k^{th} attribute as follows:
 - $\delta_k = 0$ if the k^{th} attribute is an asymmetric attribute and both objects have a value of 0, or if one of the objects has a missing value for the k^{th} attribute

 $\cdot n$

 $\delta_k = 1$ otherwise

3. Compute similarity
$$(\mathbf{x}, \mathbf{y}) = \frac{\sum_{k=1}^{n} \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \delta_k}$$

01/27/2021

Using Weights to Combine Similarities

May not want to treat all attributes the same.

- Use non-negative weights

similarity(
$$\mathbf{x}, \mathbf{y}$$
) = $\frac{\sum_{k=1}^{n} \omega_k \delta_k s_k(\mathbf{x}, \mathbf{y})}{\sum_{k=1}^{n} \omega_k \delta_k}$

Can also define a weighted form of distance

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} w_k |x_k - y_k|^r\right)^{1/r}$$

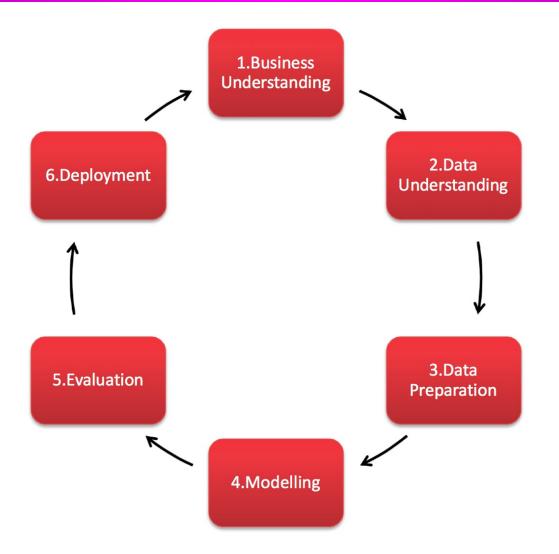
01/27/2021

CRISP-DM

CRoss Industry Standard Process for Data Mining

- Published in 1999 to standardize data mining processes across industries
- It has since become the most common methodology for data mining, analytics, and data science projects

CRISP-DM



01/27/2021

Data Preprocessing

- Aggregation
- Sampling
- Discretization and Binarization
- Attribute Transformation
- Dimensionality Reduction
- Feature subset selection
- Feature creation

Aggregation

- Combining two or more attributes (or objects) into a single attribute (or object)
- Purpose
 - Data reduction reduce the number of attributes or objects
 - Change of scale
 - Cities aggregated into regions, states, countries, etc.
 - Days aggregated into weeks, months, or years
 - More "stable" data aggregated data tends to have less variability

Transaction ID	Item	Store Location	Date	Price	
:	•	•	•	:	
101123	Watch	Chicago	09/06/04	\$25.99	
101123	Battery	Chicago	09/06/04	\$5.99	
101124	Shoes	Minneapolis	09/06/04	\$75.00	•••
÷					

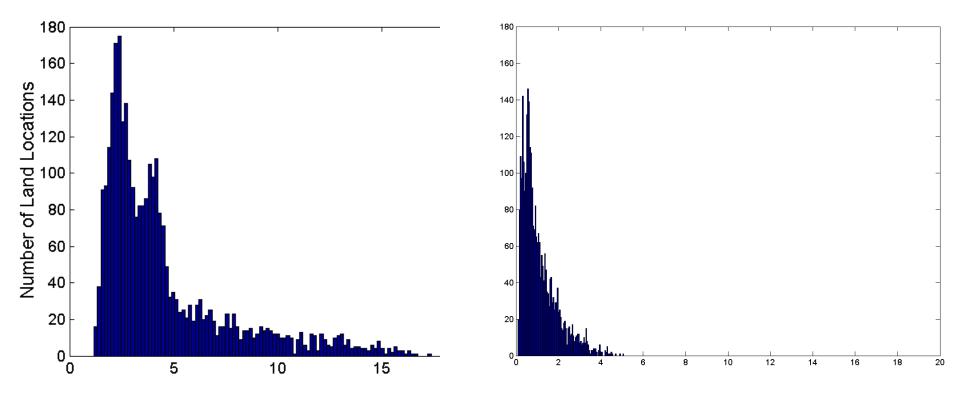
Example: Precipitation in Australia

- This example is based on precipitation in Australia from the period 1982 to 1993.
 - The next slide shows
 - A histogram for the standard deviation of average monthly precipitation for 3,030 0.5° by 0.5° grid cells in Australia, and
 - A histogram for the standard deviation of the average yearly precipitation for the same locations.
- The average yearly precipitation has less variability than the average monthly precipitation.
- All precipitation measurements (and their standard deviations) are in centimeters.

01/27/2021

Example: Precipitation in Australia

Variation of Precipitation in Australia



Standard Deviation of Average Monthly Precipitation

Standard Deviation of Average Yearly Precipitation

01/27/2021

Sampling

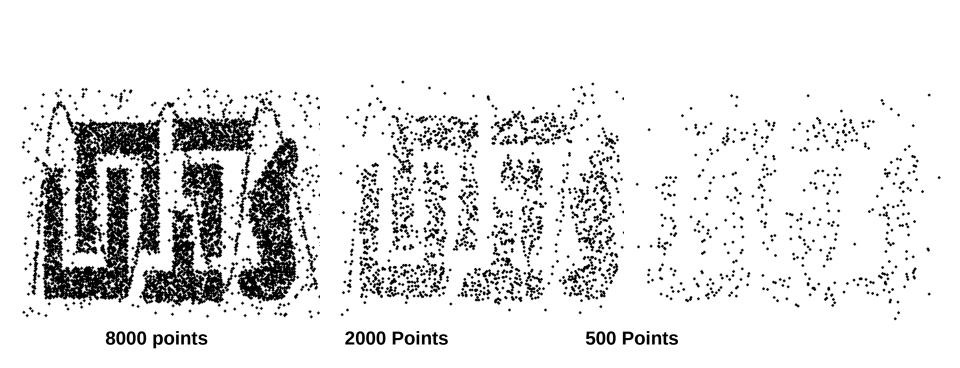
- Sampling is the main technique employed for data reduction.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians often sample because obtaining the entire set of data of interest is too expensive or time consuming.
- Sampling is typically used in data mining because processing the entire set of data of interest is too expensive or time consuming.

01/27/2021

Sampling ...

- The key principle for effective sampling is the following:
 - Using a sample will work almost as well as using the entire data set, if the sample is representative
 - A sample is representative if it has approximately the same properties (of interest) as the original set of data

Sample Size



01/27/2021

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

41

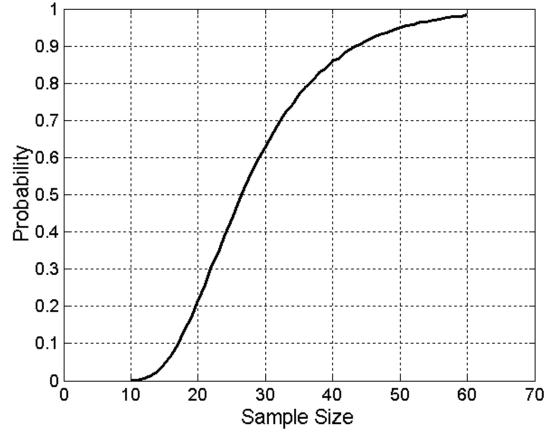
Types of Sampling

Simple Random Sampling

- There is an equal probability of selecting any particular item
- Sampling without replacement
 - As each item is selected, it is removed from the population
- Sampling with replacement
 - Objects are not removed from the population as they are selected for the sample.
 - In sampling with replacement, the same object can be picked up more than once
- Stratified sampling
 - Split the data into several partitions; then draw random samples from each partition

Sample Size

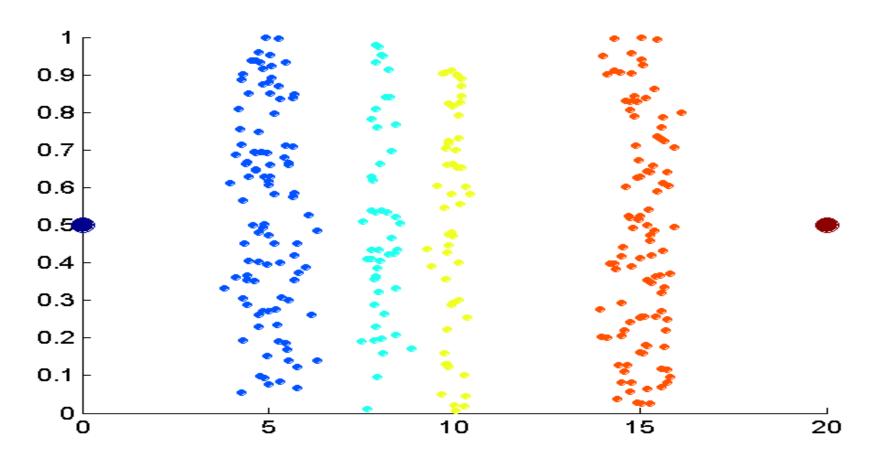
What sample size is necessary to get at least one object from each of 10 equal-sized groups.



01/27/2021

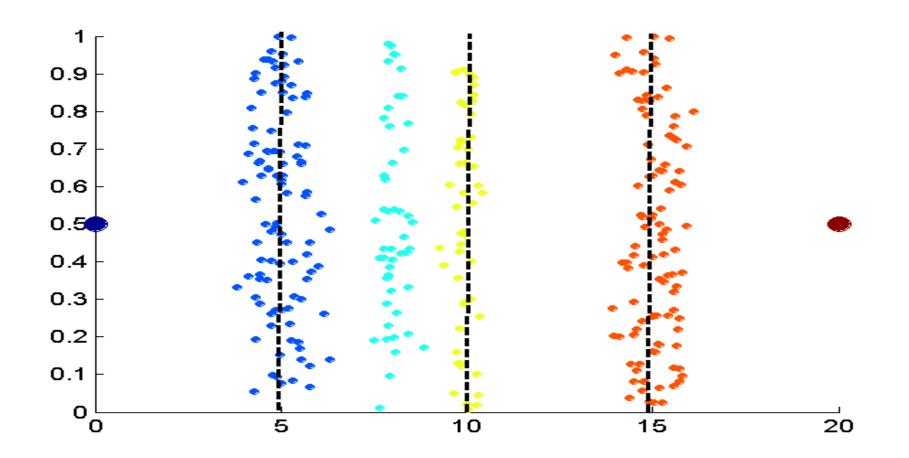
Discretization

- Discretization is the process of converting a continuous attribute into an ordinal attribute
 - A potentially infinite number of values are mapped into a small number of categories
 - Discretization is used in both unsupervised and supervised settings



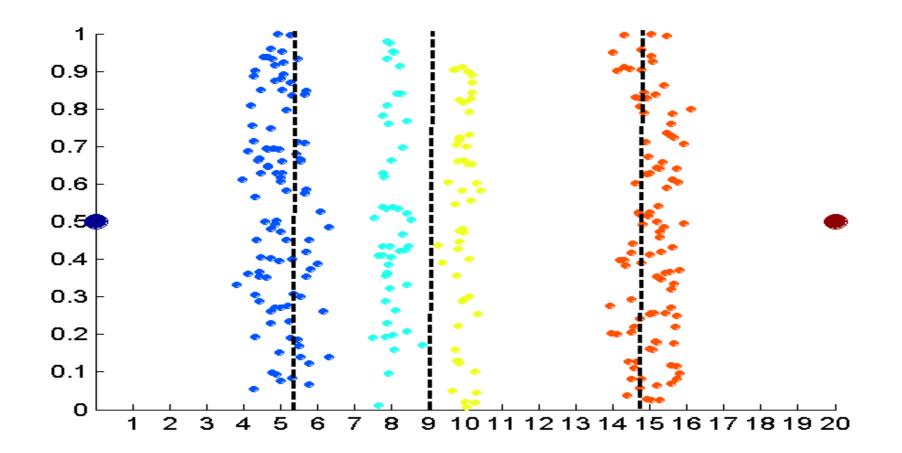
Data consists of four groups of points and two outliers. Data is onedimensional, but a random y component is added to reduce overlap.

01/27/2021



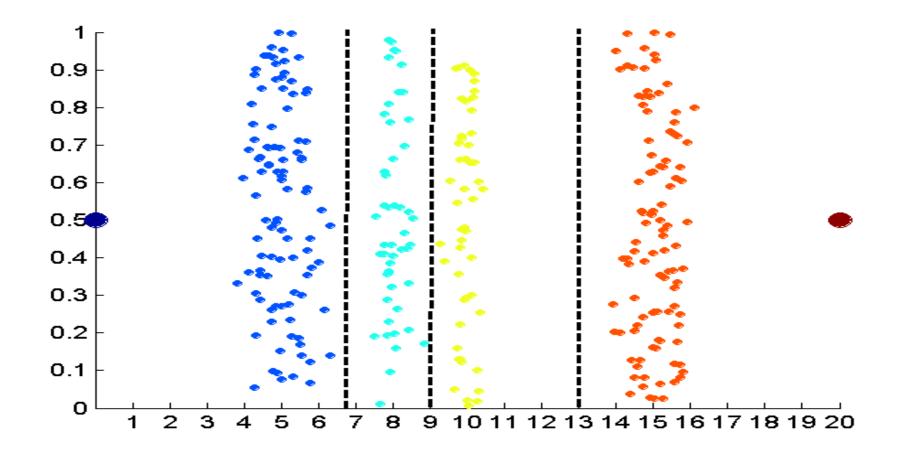
Equal interval width approach used to obtain 4 values.

01/27/2021



Equal frequency approach used to obtain 4 values.

```
01/27/2021
```



K-means approach to obtain 4 values.

```
01/27/2021
```

Discretization in Supervised Settings

- Many classification algorithms work best if both the independent and dependent variables have only a few values
- We give an illustration of the usefulness of discretization using the following example.

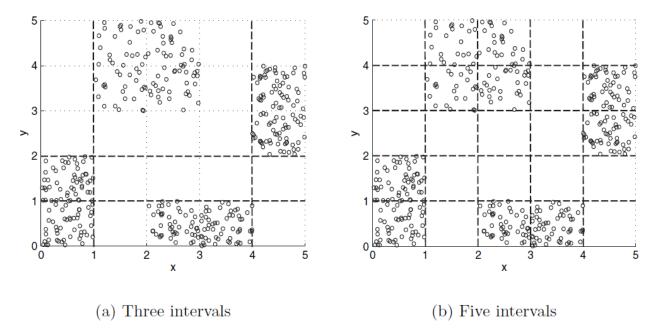


Figure 2.14. Discretizing x and y attributes for four groups (classes) of points.

01/27/2021

Binarization

 Binarization maps a continuous or categorical attribute into one or more binary variables

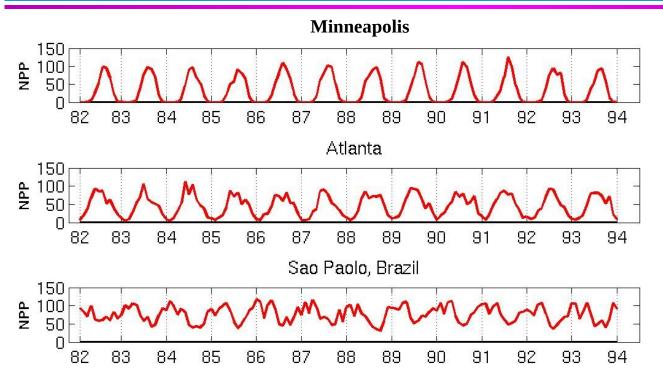
Table 2.6. Conversion of a categorical attribute to five asymmetric binary attributes.

Categorical Value	Integer Value	x_1	x_2	x_3	x_4	x_5
awful	0	1	0	0	0	0
poor	1	0	1	0	0	0
OK	2	0	0	1	0	0
good	3	0	0	0	1	0
great	4	0	0	0	0	1

Attribute Transformation

- An attribute transform is a function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k, log(x), e^x, |x|
 - Normalization
 - Refers to various techniques to adjust to differences among attributes in terms of frequency of occurrence, mean, variance, range
 - Take out unwanted, common signal, e.g., seasonality
 - In statistics, standardization refers to subtracting off the means and dividing by the standard deviation

Example: Sample Time Series of Plant Growth



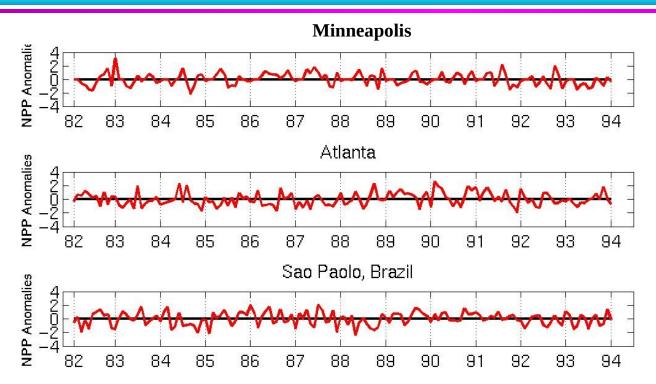
Net Primary Production (NPP) is a measure of plant growth used by ecosystem scientists.

Correlations between time series

	Minneapolis	Atlanta	Sao Paolo
Minneapolis	1.0000	0.7591	-0.7581
Atlanta	0.7591	1.0000	-0.5739
Sao Paolo	-0.7581	-0.5739	1.0000

01/27/2021

Seasonality Accounts for Much Correlation



Normalized using monthly Z Score:

Subtract off monthly mean and divide by monthly standard deviation

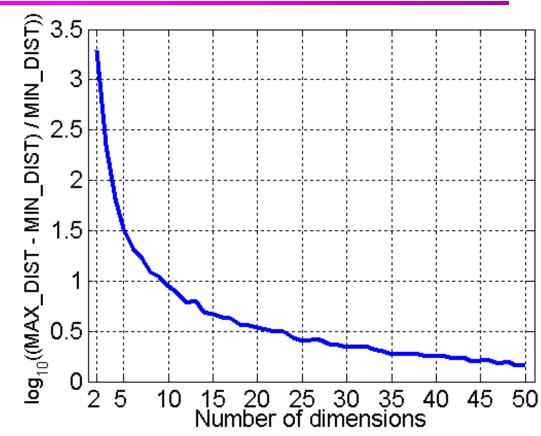
Correlations between time series

	Minneapolis	Atlanta	Sao Paolo
Minneapolis	1.0000	0.0492	0.0906
Atlanta	0.0492	1.0000	-0.0154
Sao Paolo	0.0906	-0.0154	1.0000

01/27/2021

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which are critical for clustering and outlier detection, become less meaningful



- **.** Randomly generate 500 points
- . Compute difference between max and min distance between any pair of points

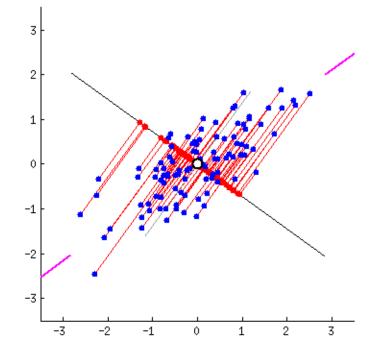
Dimensionality Reduction

- Purpose:
 - Avoid curse of dimensionality
 - Reduce amount of time and memory required by data mining algorithms
 - Allow data to be more easily visualized
 - May help to eliminate irrelevant features or reduce noise
- Techniques
 - Principal Components Analysis (PCA)
 - Singular Value Decomposition
 - Others: supervised and non-linear techniques

Dimensionality Reduction: PCA

- Goal is to find a projection that captures the largest amount of variation in data
- Linear algebra technique for continuous attributes that finds new attributes (principal components) that:
 - are linear combinations of the original attributes
 - are orthogonal (perpendicular) to each other
 - capture the maximum amount of variation in the data

Dimensionality Reduction: PCA



01/27/2021

Feature Subset Selection

Another way to reduce dimensionality of data

Redundant features

- Duplicate much or all of the information contained in one or more other attributes
- Example: purchase price of a product and the amount of sales tax paid

Irrelevant features

- Contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA

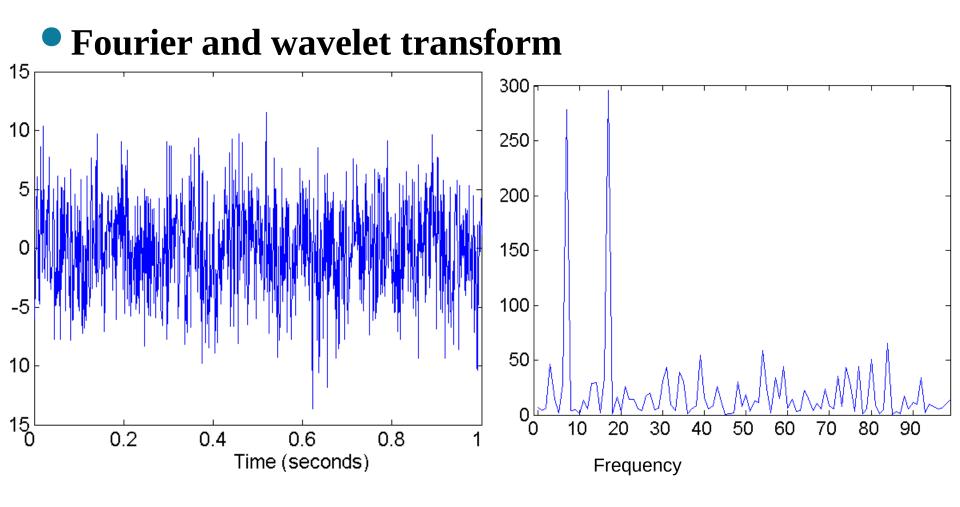
Many techniques developed, especially for classification

01/27/2021

Feature Creation

- Create new attributes that can capture the important information in a data set much more efficiently than the original attributes
- Three general methodologies:
 - Feature extraction
 - Example: extracting edges from images
 - Feature construction
 - Example: dividing mass by volume to get density
 - Mapping data to new space
 - Example: Fourier and wavelet analysis

Mapping Data to a New Space



Two Sine Waves + Noise

Frequency

01/27/2021