Data Mining: Data

Lecture Notes for Chapter 2

Introduction to Data Mining , 2nd Edition by Tan, Steinbach, Kumar

01/27/2021

Outline

- Attributes and Objects
- Types of Data
- Data Quality
- Similarity and Distance
- Data Preprocessing

01/27/2021

What is Data?

- Collection of *data objects* and their *attributes*
- An *attribute* is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, dimension, or feature
- A collection of attributes describes an *object*
 - Object is also known as record, point, case, sample, entity, or instance

Objects

01/27/2021

Tan, Steinbach, Karpatne, Kumar

- Attribute values are numbers or symbols assigned to an attribute for a particular object
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - Properties of attribute can be different than the properties of the values used to represent the attribute (meaning)

Measurement of Length

Types of Attributes

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, counts, elapsed time (e.g., time to run a race)

01/27/2021

Properties of Attribute Values

- The type of an attribute depends on which of the following properties/operations it possesses:
 - Distinctness: = \neq
 - Order: < >
 - Differences are + meaningful :
 - Ratios are * / meaningful
 - Nominal attribute: distinctness
 - Ordinal attribute: distinctness & order
 - Interval attribute: distinctness, order & meaningful differences
 - Ratio attribute: all 4 properties/operations

01/27/2021

	Attribute Description		Examples	Operations		
	Туре			•		
gorical litative	Nominal	Nominal attribute values only distinguish. (=, ≠)	zip codes, employee ID numbers, eye color, sex: { <i>male,</i> <i>female</i> }	mode, entropy, contingency correlation, χ^2 test		
Cate Qua	Ordinal	Ordinal attribute values also order objects. (<, >)	hardness of minerals, { <i>good, better, best</i> }, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests		
meric ntitative	Interval	For interval attributes, differences between values are meaningful. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests		
Nu Quar	Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, current	geometric mean, harmonic mean, percent variation		

This categorization of attributes is due to S. S. Stevens 01/27/2021 Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floatingpoint variables.

Asymmetric Attributes

- Only presence (a non-zero attribute value) is regarded as important
 - Words present in documents
 - Items present in customer transactions
- If we met a friend in the grocery store would we ever say the following?

"I see our purchases are very similar since we didn't buy most of the same things."

Critiques of the attribute categorization

- Incomplete
 - Asymmetric binary
 - Cyclical
 - Multivariate
 - Partially ordered
 - Partial membership
 - Relationships between the data
- Real data is approximate and noisy
 - This can complicate recognition of the proper attribute type
 - Treating one attribute type as another may be approximately correct

Key Messages for Attribute Types

- The types of operations you choose should be "meaningful" for the type of data you have
 - Distinctness, order, meaningful intervals, and meaningful ratios are only four (among many possible) properties of data
 - The data type you see often numbers or strings may not capture all the properties or may suggest properties that are not present
 - Analysis may depend on these other properties of the data
 Many statistical analyses depend only on the distribution
 - In the end, what is meaningful can be specific to domain

01/27/2021

Important Characteristics of Data

- Dimensionality (number of attributes)
 - High dimensional data brings a number of challenges
- Sparsity
 - Only presence counts
- Resolution
 - Patterns depend on the scale

Size

Type of analysis may depend on size of data

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data
- Graph
 - World Wide Web
 - Molecular Structures
- Ordered
 - Spatial Data
 - Temporal Data
 - Sequential Data
 - Genetic Sequence Data

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

01/27/2021

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multi-dimensional space, where each dimension represents a distinct attribute
- Such a data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

01/27/2021

Document Data

- Each document becomes a 'term' vector
 - Each term is a component (attribute) of the vector
 - The value of each component is the number of times the corresponding term occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

01/27/2021

Transaction Data

- A special type of data, where
 - Each transaction involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.
 - Can represent transaction data as record data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples: Generic graph, a molecule, and webpages

01/27/2021

Ordered Data

Sequences of transactions

Items/Events (AB) (D) (CE) (BD) (C) (E) (CD) (B) (AE)

An element of the sequence

Introduction to Data Mining, 2nd Edition Tan, Steinbach, Karpatne, Kumar

01/27/2021

Ordered Data

Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

Ordered Data

Spatio-Temporal Data

Jan

Average Monthly Temperature of land and ocean

01/27/2021

Data Quality

Poor data quality negatively affects many data processing efforts

- Data mining example: a classification model for detecting people who are loan risks is built using poor data
 - Some credit-worthy candidates are denied loans
 - More loans are given to individuals that default

Data Quality ...

- What kinds of data quality problems?
- How can we detect problems with the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - Wrong data
 - Fake data
 - Missing values
 - Duplicate data

01/27/2021

Noise

- For objects, noise is an extraneous object
- For attributes, noise refers to modification of original values
 - Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen
 - The figures below show two sine waves of the same magnitude and different frequencies, the waves combined, and the two sine waves with random noise
 - The magnitude and shape of the original signal is distorted

Outliers

- Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set
 - Case 1: Outliers are noise that interferes with data analysis
 - Case 2: Outliers are the goal of our analysis
 - Credit card fraud
 - Intrusion detection

01/27/2021

Missing Values

Reasons for missing values

- Information is not collected (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)
- Handling missing values
 - Eliminate data objects or variables
 - Estimate missing values
 - Example: time series of temperature
 - Example: census results
 - Ignore the missing value during analysis

Missing Values

- Missing Values is perhaps the most common problem in real world data
- According to Rubin (1976), every data point has some likelihood of being missing
- The theory leads to the following categories:
 - MCAR: Missing Completey At Random, if the probability of missing is the same for each case
 - MAR: Missing At Random, if the probability of being missing is the same only within groups
 - MNAR (or NMAR): Missing Not At Random, if neither MCAR nor MAR holds

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeneous sources
- Examples:
 - Same person with multiple email addresses
- Data cleaning
 - Process of dealing with duplicate data issues
- When should duplicate data not be removed?

01/27/2021