Web
Security

COOKIES
OAUTH 2.0 AND OPENID CONNECT

TOKENS
CONNECTION PROTECTION IN SEVERAL FLOWS

APM@FEUP

Web applications and attack surface

external
resources

network attacker

web server

HTTP protocol

1
user client @ HTTP web request =
browser @ HTML web response <
(HTML, CSS, JS, images)
web
service
§ database
web attacker
(malicious site)
APM@FEUP ,

Security needs

» As any other application and resource access
= Web apps often need user identification, authentication, authorization

»The HTTP protocol is stateless

= Some mechanism to assure that several requests come from the same
user, after authentication, is needed

= Establishment of a session
= Cookies were invented in 1994 (Netscape), patented, and standardized
* IETF RFC 2109 and RFC 2965, with the more recent RFC 6265 (2011)
* They are automatically transported between web app and browser
* They can carry session identification

1. The browser requests a web page

HTTP/1.0 200 OK
Content-type: text/html

Set-Cookie: theme=light
Set-Cookie: sessionToken=abc123; Expires=Wed, 0g Jun 2021 10:18:14 GMT

2. The server sends the page and the cookie

(ecesii] [Hello World!

I0SMOIq QO

GET /spec.htmIHTTP/1.1
Host: www.example.org
The cookie

Cookie: theme=light; sessionToken=abc123

APM@FEUP

IOATS GO

Cookie authentication

» Besides a pair name-value cookies can have more attributes

* Domain and Path specify the server domain (and subdomains) and the
address (and subpages) to where cookies can be returned

* Expires (or Max-Age) specifies the validity in time
* If omitted, only valid for the current session

» Secure and HttpOnly limits the cookie communication to encrypted
transmission only (the first) and not readable by client-side scripting

(the second)
»Using some authentication/authorization protocol

Auth server

Browser Web Server
POST login.cgi
Username & pwd Validate user "
| Set-cookie: auth=val auth=val
Store val
GET restricted.html | ied ol
ie: th= 1 restricted.ntm
pookds:auth=va auth=val | Check val
If YES, " YES/NO
restricted.html
4

APM@FEUP

Session hijacking

> Cookies can be transmitted in clear text
= Vulnerable to eavesdropping

= Once a valid cookie is captured, it can be used directly or used in a man-
in-the-middle attack

= Counter-measure: protect the channel (SSL/TLS with HTTP — HTTPS)

» DNS cache poisoning
= Fabrication of sub-domains to get the cookies

» Malicious addresses
= Accessed using cross-site scripting (XSS)
* Script in the same site directs information to another (malicious) site

= Performing operations on a legitimate site through cross-site request
forgery (CSRF)

* User executes script in a malicious site that uses non-expired cookies in valid
operations on previous visited site

= Proxy request
* A proxy server is specified through XSS

APM@FEUP 5

Web authentication / authorization

» Many systems have been proposed and developed
* For many general-purpose scenarios
» Using specialized servers as identity and/or authorization providers

* They can use external devices to identify the user
+ APIV system, using a smartcard, and a PIN or biometric 2" factor

* In large enterprises, a single authentication server can perform this
operation for many web applications

= Or several organizations can rely on a third-party identification and
authentication server
* These are called single sign-on solutions (or SSO)

» These web security mechanisms that involve several servers rely on
* Automatic redirections between them (HTTP 302 (temporary change))
* Small document for information transport (tokens)

APM@FEUP

PIV - Personal Identity Verification

» Based on smartcard possession
= Standardized by NIST (FIPS 201-2) / European countries have similar

= Usually requires 2FA (card + PIN / biometrics)

PIV Application APIon PIV
on Lo

h
t PIV card issuance
\ and management
! Connect

Begin transaction

o [1dentity profiling respor 1 .o ! 1
& registration 1 * ' Select application
o '

Select application

Local System Card Edge

Read value (PIV Auth certificate)

PIV_Auth certificate returned

Verify PIN

PINACK

__________ ; |

PIV System |
- based on a signed certificate
- asignature proving the
private key possession Credential Number
APM@FEUP matching the certificate Authentication 7

Single-sign-on and federated authentication

. & Applications

Service providers
-
-
-, “ Ayifentication
RePZCPELEED
7
ey ’
| | -
| p
Identity provider i , ‘3
@ ID token RN

—_— - User attributes

|/ T ‘ Q

Redirect
Identity t Identity t
attributes attributes

database database

Shibboleth

SAML

Openld
APM@FEUP

OAvuth 2.0 Authorization Actors

» OAuth was specified for allowing users be aware of
operations in protected resources (usually created by them)
by web apps that use the resources

= OAuth 2.0 is standardized and described in RFC 6749

* Specifies an authorization flow for web APIs and resource access on behalf of a

web application and user
* It's not specifically an authentication protocol, but implicitly must include
authentication
* Depends on the quality of the user registration
* It can be adapted for many situations and scenarios

authorization
provider

protected

OAuth 2.0 authorization basic flow

Authorization Code Flow (RFC 6749, 4.1)

App makes an

App asks User whether
Service’s authorization

endpoint.

to link to Service, and [
User responds to it. Link to Service Y = === @ Authorization Endpoint
-------- .@ ABC? o~ o’ access token.
? / 7
. ’ /',o

\ an authonzallon /
App displays @ page to App Ay
-

]

]

]

i

]

the authorization ~~=«. = 4-.@' "4 :
page to User. | Authorization Page | /’ 1
\

\
\

App XYZ is requesting V4
the permissions below. /
) / Service issues
1. Read profile. ! ashort-lived
C:, 2. Post to timeline l,
User checks the requested, Approve? :
permissions, inputs ID and 1
password to login Service,| L2810 ll'
J

and approves the Password
authorization request. | oo oo

e 4 Yes- No

L

authorization request to

Authorization

Authorization Server RTINS Resource Server

info about the Resource Server
verifies the access
© ’token and returns
the requested
Introspection Endpoint 0‘4 resource. .;‘
Resource Server |, _(D)”

Token Endpoint @~ inquires of
k ‘l Authorization
App presents the @ ! Serverinfo
authorization code to ! about the

Service’s token endpoint. access token.

Web API

1
]
W
,' ! Service issues 1
‘ ! 0 an access token %

4
authorization code M~ Authz Code "’1 7 to App.

’ P

|, HE
4, App presents the ! :
m access token and { !
| requests Resource. @ §

| Resource H»-‘

| ®- @ Web API call

APM@®FEUP browser client app service resource 9 APM@FEUP 10
The authorization request OpenlD Connect
> Itis a redirection (as a response to another HTTP request) » OAuth 2.0 does not provide any direct user identification
= The client app should be previously registered with the server * The web app does know nothing about the user
* Authorization codes and access tokens are opaque to the app
HTTP/1.1 302 (or 303) Found >O ID C d OA h
Location: https://authorization-server.com/auth? pen onnect extends ut
response_typescode (or code+id_token, orid_token, or ...) = Uses provider authentication and supplies an identification token
&client_id=29352735982374239857 * represents the user and contains user info (claims)
&redirect lurkhttps://eximple-app.com/callback response_type=id_token response_type=code id_token
&se ‘:‘|:ve=create+delete m Authentication & [Client | Authentication &
) : futhorizaton Reauest Cautnoriation _pjanorization Reauss Cauthorizaton
&state=xcoivjuywkdkhvusuye3kch (CSRF protection) Endpoint 2 9 Endpoint
&code_challenge=tg6jkhwdI9tweakjhd3j (PKCE protection) g(gﬁ/tt—_
&code_challenge_method=5256 (PKCE protection) %a % >
O (o] -———®"'
. T (Emoncmn) 1 (3) %0 reqc
= The response_type determines the flow S L + | Token
o |f .t . | d d t k th t. t. . | I'f d d t Endpoint @ ______ Endpoint
it includes id_token an authentication is also performed and returns an -
ID Token
1 APM@FEUP 12

APM@FEUP

Protective implementation of OAuth

» RFC 6819 recommends good practices in OAuth 2.0
implementations

= All of them should be followed
= One of them addresses a potential CSRF attack

Obtains a legitimate
authorization code (from his own
subscription) from the authorization

- .
attacker % E! provider

injects it as the auth code of another user tricking him to click
some link containing a forged request to
the app, as if it is a reply from the

auth provider

§ authorization
provider

OAuth code stolen protection

> User interrupts access after obtaining a valid auth code

» Because the auth code comes in a parameter in the redirection from the
auth server, it remains in the user’s browser history ...

= Potentially an attacker can see it in the browser history, an perform a
legitimate authorization replacing his own code with another user code

- Client sends the
\Q verifier in the back-
channel request to the

e @ authorization server @
Resource .~ Client generates the Authorization Resource e nton
code verifier and Server Owner @ o
I challenge, includes the

challenge in the front- “
channel request to the \
\ “ authorization server

Eent Protected Client

Protected
Resource

Protection: include 2 a Protection: Proof Key for Code Exchange (PKCE)
browser state value when asking .
APM@FEUP for authorization client app 3 APM@FEUP 4
OAuth code grant and token exchange Tokens

Security protections:

CSRF protection (state)

and PKCE

(code_challenge / code_verifier)

authorization
server

@ Authorization request (redirect)

state=xxxxxxxx & code_challenge=yyyyyyy & code_challenge_method=5256
@ Authorization dialog (direct)

code_verifier (random) is generated and stored
in the client application

code_challenge = H(code_verifier)
code_challenge_method specifies which H

® Code response (redirect)

State=XXXXXXXX & COde=CCCCCCCCC (authorization code)

@ Token exchange (direct)

code=cccccccce & code_verifier=zzzzzzzzzzz
APM®FEUP

1!
<+—— Theaccess token is returned if the code is verified 5

»Tokens are small documents protected against
« forgery (usually signed by the originator)
« disclosure and modification (encrypted and authenticated)
* The destination (audience) can verify, know the origin, and read the content
* They usually carry authentication, authorization data, user identity
* In the form of name/value pairs, aka claims
* The audience trusts the issuer (IdP, AuthN or AuthZ services)

* Tokens can use a JSON format (called ‘jots’, aka as standard JWT)

* RFC 7519, together with RFC 7515 (JWS), RFC 7516 (JWE), RFC 7517 (JWA),
RFC7518 (JWK)

* Used together these standards form the JOSE (JSON Object Signing and
Encryption) defined and exemplified in RFC 7165 and RFC 7520

Identity Provider
Authorization §
&b

Authorization server

. . Authentication server
Authentication

o g X 2=
user p .
——————— Q authorization token resource provider
browser T TS
client app clienta a
APM@FEUP identity token PP 16

JWT format with a signature (JWS)

» These tokens carry information directly from an issuer to the
audience (the application that uses it)

= e.g., an identity token from an IdP to a client app

= Using a cryptographic signature, the audience can verify the integrity
and the origin

JWT with encryption (JWE)

»When a token contains confidential info, it should use JWE

* E.g., when received by an app to be used in a resource server, the app
doesn’t need to know the content

= JWE specifies a 5-part token

BASEG4URL-ENCODE BASEG4URL-ENCODE BASEG4URL-ENCODE BASEG4URL-ENCODE BASEG4URL-ENCODE
(uTF8(JOSE Header)) (JWE Encrypted Key) (Initialization Vector) | - (Ciph) * (A ication Tag)
BASE64URL-ENCODE BASE64URL-ENCODE BASEG4URL-ENCODE The signature is performed
/L(um(.loss Header)) (JWS Payload) (JWS Signature) overthe 2 first parts
can be a HMAC (shared key) 'ty JWT, random symmetric key random IV the encrypted payload. the MAC produced by the
yn! Y s . et v ’ encrypted by an asymmetric i N
{'typ": YWT,) or use RSA or ECC (asymmetric) enc’: '‘A256GCM ublic key (from the audience) (different for each token) GCM algorithm.
‘alg’: *HS256' } {Yiss’: issuer ‘nonce’: anti-replay o ‘alg’: '‘RSA-OAEP'} p Y
'sub': subject ‘acr’, ‘amr': authn characterllzatlon h " ‘b f d
‘aud’: audience ‘at_hash’, ‘c_hash’: companion hashes e encryption must be periorme: The destination server must be Sometimes to guaranty to the client app
with a symmetric key in AES with
‘exp’: expiration authent‘i/cation and »ZD (the GCM mode previously registered with the knowledge of the origin of the access
‘iat': issued at Openld Connect token isth + used). The AD is derived fi Authorization server and its public token, this JWE can be the payload of
\jti": unique id is the most used). The s derivedirom key stored. a JWS, verified and extracted at the app.
J q ! the header byte sequence. Y
= - - registration
Client Identity Client Access Token A
. ST X Authorization
application @IDToken Provider application Server -~
request @
APM@®@FEUP 17 APM®@FEUP 18
L] L] L]
Opaque tokens and introspection The Userinfo endpoint
» These tokens carry on just a meaningless random string »From OpenlD Connect specification
= The claims are maintained on a database at the emitter (authorization » The response from a successful authentication is an IDToken
server for access tokens) * It only proves authentication of a user with a given ID
* The emitter must have an introspection endpoint with an authenticated * To obtain user information a request to a user info endpoint must be made
access to the claims of a token with an access token (obtained at the same time)
* It's also possible a hybrid implementation reponse_iypesid oken token
- - er Authentication &
Authorization Server Access Token — thorization Request| Sy Se S The access token should contain the userid in
Opaque token . - 2 Endpoint it ol . \ fapn ' lai
Authorization Server the ‘sub’ claim and possibly a ‘user’ or ‘username’ claim
Access Token Table The ‘scope’ claim must include “openid”
Access Token identifier scope client_id .. Access Token Extra Data
................. javc123| |] identifier properties ID Token].t ,,,,,
L N — o The Userinfo endpoint of the AuthN/AuthZ server is treated as
S Endpoint a Resource endpoint, so the access token is sent in the Authorization
Hybrid token header
Resource Server Authorization Server Sample response:
HTTP/1.12 200 OK
~ Request: Content-type: application/json
The _ DB GET Juserinfo HTTP/1.1
(3] {
introspection .
request P et e BN el s T Host: server.example.com “sub”: “9XE3-J134-00132A",
\ Call the introspection | from the request.) the access token Accept: application/json “preferred_username”: “alice”,
\ endpoint ;mh the from the database. P : pP ‘ J —_— “name”: “Alice Smith”,
access token. - Authorization: Bearer <access_token> e : .
> Introspection email”: “alice.smith@example.com”,
Endpoint “email_verified”: true
} 20

Return the info. 19

APM@FEUP

Userinfo and Resource provider access

»The access token returned by OAuth can grant access
= To the Userinfo endpoint on the AuthZ server itself
= To the Resource provider with the permissions granted to/by the user

»Sometimes it is desirable to separate
= OpenlD Connect has a flow allowing that

response_type=code id_token token

“Client | Authentication & Server

Refresh tokens

» Access tokens should be very short-lived
= A few minutes, allowing only a small number of requests
* When they expire a new one should be obtained

* To avoid a new authorization with user intervention, many
implementations return a refresh token, together with the access token

* Refresh tokens live a longer period (like an hour or more)
" They can be SRRy ZENO)

_ uthorization Request " authorization used to get
The access tokens here are different: Endpoint [Appxvz |
/_ another
. . . Auth tion esource e
The first can contain only the “openid” scope (and other ! m “anern access token f‘r‘f‘:‘ ‘"":“'w
related defined by the Openld specification) i Token App requests Services (©)--~ptoken and returns
______ token endpoint to re- the requested
_— ‘ Refresh Token | | issue an access token. || v o0 . :
i 4 [: pection Endpoint 0'¢....... resource. :
The second can contain only the scopes related to the Access T°ke” _______ @ . O
resource provider Aumonzanon Code |~ _Token Request
_______ / 1>
===~ L Token Assuming that App has a refresh i/ H
_____ Endpoint token which has been issued along i
D T k _, ’ with an access token as a result of an | |
LG & authorization request in the past H B \Web API
\ o
Access Token il
an access token b " \ §
o450 (Caccessoten] | o0 7Cheone
| s et @) ;
Resource |w{..... I
Web API ca
APM@FEUP »n APM@FEUP @-@-weovrcal ,
© 2017 Authlete, Inc. https://www.authlete.com/

App and resource server authentication

»>1dP and AuthZ Servers need to recognize their clients

= Usually, they need to be registered previously
* There are standard protocols to register dynamically, or use some OOB way
* Either way they should be confirmed by an administrator

*= In the registration a unique ID is assigned (e.g., a client_id property) and
also a shared secret (client_secret) or a pair of asymmetric keys

= All requests to AuthN/AuthZ servers must include authentication data

Client Application includes a client ID | Authorization Server
and a client secret
[T Clientip 1S perilitnat

| Client Secret ;u—_—_gy

Token Request

Common form of request authentication

(always using TLS)
Token Endpoint

["iciient 1D}:(Client Secret)"] Encode by BASE64

(Token Endpoint} HTTP/1.1 3
tion Server} v
(BA.SE64 encoded Credentials}

-form-urlencoded

(abbrev)

APM@FEUP 23

App and resource server authentication (2)

* Another way is using a client assertion

Client Application (Client ID)", A JSON object is filled with client data
3 ient ID}",
Client Secret ken Endpoint}",
{Expiration Time},
RFC 7523, 2.2 {Issuance Time}
e — |
Client Application Authorization Server
L. Public Key Public Key
It is signed, sent as a parameter,
L . Sign Verify
and verified at the server with
(TR | o ten_assertion- HEE
N [Signature]

A public key established at registration

4 Signature Token Endpoint

Token Request

= The only unauthenticated request accepted should be the initial authorization request (starts the direct
dialog with user)

GET {Authorizatio:
?response_type=cod
&cllent id=

&code challenge—{: 1all
&code challenge method={Metr

APM@FEUP 24

Permissions and the scope claim

»Oauth does not specify how to represent permissions

= It specifies the ‘scope’ claim only as a list of words, space-separated

* The ‘scope’ content can be requested by the app in the initial authorization
* It should be presented to and authorized by the user
* It should be checked by the AuthZ server, knowing the user and resource server
* The AuthZ server can grant all or only a subset of the requested ‘scope’ words
* Itisincluded in the Token endpoint response, and in the access token
* It should be checked by the resource provider (it should also know the user)

Request to exchange a code by a token in the /token endpoint
Notice the code_verifier (PKCE) parameter

sredirect 1

scode_verifier={Verifier}

The Client app should also authenticate with the server using one of the
"token_type":

previous methods "expires_il
"refresh_toke:
"scope": "{Scope:

Successful response from the AuthZ server

APM@FEUP 25

Bearer vs PoP tokens

»Client apps present access tokens to a resource provider
= Usually in the Authorization header as a Bearer token
» They are honored by the server (if valid), independently of the sender
» What if, from a server or app vulnerability, they are stolen?

* The resource and operation that they grant access, can also be stolen
* Bearer tokens are like cash, they grant access to who ever have them

* To protect against this possibility, we can use PoP tokens
* PoP = proof of possession

= With this kind of tokens, the resource provider should be able to check
that who sends them is the same app that has requested them

* The AuthZ server associates a key with each token when they are emitted

Key:
Opaque to client Known to dent
Associated with scopes Associated with token

APM @ FEUP and RO Sent as is to PR Used to sign request 26

PoP tokens

» The associated key is generated in the exchange of code

= It can be generated in the client or AuthZ server, and can be symmetric

or asymmetrlc
Provided By:
Client Server
Not generally a good idea, since the client Good for constrained
could be choosing a weak secret, but clients or clients that
Symmetric possible for clients with a Trusted Platform can’t generate secure
Module or other mechanism capable of keys
Key Type: generating truly secure shared keys
Good for clients that can generate secure Good for clients that
keys, minimizes the knowledge of client’s can't generate secure
Asymmetric ; o . X X
private key; client registers public key only, keys; server generates
server returns public key only key pair, returns key pair

= For a symmetric key both the client and server must know and store it
* The server can include it inside an encrypted JWT (a JWE)

= For asymmetric the server stores the public and the client both
* Again, the server can embed the public key in a JWE

APM@FEUP 27

PoP tokens generation phase

L=

Resource Client Authorization Protected
Owmer Server Resource
Qient requests
authorization from
resource owner
- = ow

Resource owner authenticates to
authorization server and authorizes client ‘@
H Any valid OAuth
grant type can
be used here.

L]
Authorization server issues authorization grant to
client to act on resource owner’s behalf
e = = = = e = = = =

Client sends ;>
authorization grant

: to server with its
E own generated key
g Authorization
= server retums a
g () “token bound to
this key
Client sends A

authorization grant
to server

Authorization server
generates key,
K assodiates public
key or shared key
with token, returns
key to dient

Authorization server
generates key

Client stores token
and associated
key for use with

protected resource

.

APM@FEUP i 28

PoP tokens use and verification

Ed 8 &

Response from the token endpoint

> If a PoP token is returned, and the server generated a key or

B _—y
Resource Client Authorization Protected . .
Ovmer o mezaurce keys, the token endpoint response should include them
C request using the K
token’s key
»>In the token endpoint request and response keys should be
access toven to prorecied resource transmitted using the JWK specification
5 D, = A JSON object different for each kind of key
_"8‘ loo:sa;lp :okenK
= ily to . .
g el = Example of a response containing a pair of RSA keys
- Protected * These keys are always ephemeral
Es | @
52 -~ :
token
Protected resource "access_token_key"
s) equest on secess token ane Cmes
g § Authorization server
= T and associste key

sionature on @

the request

S]

Protected resource },
returns resource or error "alg”: "RS256
as appropriate }
APM@FEUP T 1 29 APM@FEUF 30
Client app token preparation PoP — Another way
>The client app creates a JSON object containing »>To avoid the key generation and transmission
= The original token, a time stamp, and some HTTP request data " We can use the Mutual TLS authentication feature and have a client
certificate and private key on the client app side
{
) Client Application ~ |Aclient certificate is sent | - Aythorization Server
; ey | through the mutual TLS
connection.
= Then this is used as a payload in a JWS token, signed with the <M*—Im,k ------- pre

symmetric or private key, corresponding with the association in the v Token Endpoint]-y,

AuthZ server
eyJThbGci0iJSUzI1NiJ9.eyJThdCI6ICTI4dX10Z302Nzg5MDQ57GFmc2RmMMIMOZzMiLCT0cyI 6 IDMx
NjUZzODMs ImhOdHAIOnsidiI6I1BPUL0iLCI1I0ibGo] Yihve3060TAWMITIEQ0 . m2Na5CChyt " T_he server verifies the certificate and extracts the public key that it also
0bvmiWIgWB_yJ5ETsmrBSuB_hMu7a_bWqn8UoLZxadN8s9joIgfzv09v1757DVMPFDIE2XWwlm binds to the token
rfIKn6Epgjb5xPXxqcSIEYoJ1lbkbIP1UQpHY8VRpvMcM1JIB3LzpLUfe6zhPBxnnO4axKgcQE8SL . . .

GXGVGASPGect 92Xb76G04G3cDnEx_hxX08XnUL2pniKW2C2vY4b5Yyqu-mrXb6r2F4YkTkrkHE * The client uses the private key to sign the token
GoFH4w6phIRv3Ku8Gml_MwhiIDAKPz3_ 1rRVP_jkID9R40sKZOeBRcosVEW3MoPgcEL20XRrLh * The resource provider also receives the same certificate, and use it to verify the
Y33 9XMdXo8ayjz 6BaRIOVUW3RDUWHPIDmg token '
= Finally, the token is sent to resource provider, in the Authorization " A disadvantage could be the use of the same key for several tokens
header * Can be mitigated if the client app server, the AuthZ server, and the resource
we SR Fio provider share and trust the same private CA
Attastent ot ook ayihbaalCLTRTREINSS ey AT ST (AT GRYO g RDT o o * Make the client app generate a new certificate (in the CA) for each token it obtains
APM@FEUP 31 APM@FEUP 32

Web applications common attacks

» OWASP lists the top 10 web apps vulnerabilities and attacks

= The list is periodically renewed

= https://[www.owasp.org/index.php/Cateqory:OWASP_Top_Ten_Project

= Complete characterization and countermeasures are included

OWASP Top 10 - 2013
A1 - Injection

A2 - Broken Authentication and Session Management
A3 - Cross-Site Scripting (XSS)

A4~ Insecure Direct Object References [Merged+A7)
A5 - Security Misconfiguration

A6 - Sensitive Data Exposure

A7 - Missing Function Level Access Contr [Merged A
A8 — Cross-Site Request Forgery (CSRF)
A9 - Using Components with Known Vulnerabilities

A10 - Unvalidated Redirects and Forwards

APM@FEUP

1

= OWASP Top 10 - 2017

= A1:2017-Injection
=» A2:2017-Broken Authentication
3 A3:2017-Sensitive Data Exposure

|J A4:2017-XML External Entities (XXE) [NEW]

A5:2017-Broken Access Control
3 roken Access Control [Merged]

N

A6:2017-Security Misconfiguration

C

AT:2017-Cross-Site Scripting (XSS)

5]

A8:2017-Insecure Deserialization [NEW, Community]

v

1A9:2017-Using Components with Known Vulnerabilities

i3]

A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

2017
A01:2017-Injection
A02:2017-Broken Authentication
A03:2017-Sensitive Data Exposure
A04:2017-XML External Entities (XXE)
A05:2017-Broken Access Control
A06:2017-Security Misconfiguration
A07:2017-Cross-Site Scripting (XSS)
A08:2017-Insecure Deserialization

A09:2017-Using C¢ with Known
A10:2017-Insufficient Logging & Monitoring

2021

= A01:2021-Broken Access Control
> A02:2021-Cryptographic Failures
»A03:2021-Injection

(New) A04:2021-Insecure Design
. > A05:2021-Security Misconfiguration

\\/v A06:2021-Vulnerable and Outdated Components

" A07:2021-Identification and Authentication Failures

A08:2021-Software and Data Integrity Failures
> A09:2021-Security Logging and Monitoring Failures*
w) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey

