

BSC IN ELECTRICAL AND COMPUTER ENGINEERING

L.EEC025 - FUNDAMENTALS OF SIGNAL PROCESSING

Academic year 2024-2025, week 4 TP (Recitation) exercises

Topics: sampling and reconstruction of signals

Exercise 1

The bandwidth of signals $x_1(t)$ and $x_2(t)$ is limited to Ω_1 and Ω_2 rad/s, respectively. Find the minimum sampling frequency for each one of the following signals:

- **a)** $x_1(t) + x_2(t)$
- **b)** $x_1(t) \times x_2(t)$
- c) $x_1(t) * x_2(t)$

Exercise 2

The continuous-time signal $x_c(t) = 1 - \sin(200\pi t) + \cos(700\pi t)$ is presented to the input of the following system whose sampling frequency is 600 Hz. Function $H(e^{j\omega})$ represents an ideal stoppass filter whose stop-band is defined in the range $\pi/4 \le |\omega| \le 3\pi/4$. Consider gain 1 in the passbands. Notice that an *anti-aliasing* filter does not exist.

- a) If an *anti-aliasing* filter existed at the input of the system, which specifications should it exhibit ?
- **b)** Find the frequencies (in the range $-\pi \le \omega < \pi$) that exist in the discrete-time signal x[n].
- c) Considering ideal reconstruction, find an expression for $y_c(t)$.