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Summary (1/2)

• Characterization and representation of discrete signals

– Types of signals

– Discrete-time signals

• representation of a discrete-time signal

• basic discrete-time signals

• Characterization and representation of discrete systems

– Properties of discrete-time systems

– Linear time-invariant systems (LTI)

• response to a discrete-time input

• Discrete-time convolution

• properties of LTI systems

• FIR and IIR systems

• (linear) difference equations with constant coefficients
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Summary (2/2)

• Basic signal properties

– Continuous-time versus discrete-time

– Periodic versus aperiodic

– Deterministic versus random

– Energy versus power

– Sinusoidal sequences with a prescribed SNR

• the auto-correlation and the cross-correlation

– concept and meaning

– definition of the auto-correlation

– definition of the cross-correlation

– auto-correlation and cross-correlation examples

– auto-correlation and cross-correlation properties
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Characterization and representation of discrete signals

• types of signals and systems

– continuous-time signal (or analog) = continuous function of 

independent continuous-time variables

– continuous-time systems: those whose inputs and outputs are 

continuous

– discrete-time signal = continuous function of independent discrete-

time variables

– digital signal: discrete function of independent discrete-time 

variables

– digital systems: those whose inputs and outputs are discrete

Despite the fact that digital signal processing presumes digital (i.e.,

quantized) signals, we will focus mainly on discrete signals and systems 

and will address quantization separately, when that is required.
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• representation of a discrete-time signal

x[n],    n    ] -, … , -2, -1, 0, 1, 2, … , +  [

x[n] represents symbolically the ENTIRE discrete signal for - < n < +

taking a specific value of n, for example n=2, then x[2] represents the 

magnitude of the sample of x[n] at position 2 in the sequence of 

numbers

x[n-n0] represents x[n] delayed by n0 samples (admitting n0 is positive)

-3 -1 1 2 3 n-2 0

x[-3]

x[-2]

x[-1]

x[0]

x[1]

x[2] x[3]

n integer

x[n-2]

-3 -1 1 2 3 n-2 0

x[-3]

x[-2]

x[-1]

x[0]

x[1]

x[2] x[3]

4 5

Characterization and representation of discrete signals
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• basic discrete-time signals

unit impulse (and not “Dirac” impulse! – what is the difference ? )

– this signal is very important for various reasons, including the 

possibility to express any discrete-time sequence as a sum of scaled, 

delayed impulses :

-3 -1 1 2 3 n-2 0

1

……

Characterization and representation of discrete signals
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unit step

– it is possible to write:

NOTE: it is also possible to write [n]=u[n]-u[n-1]

-3 -1 1 2 3 n-2 0

1

……

accumulated sum

of impulses

till position n

sum of

delayed impulses

Characterization and representation of discrete signals
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exponential sequences

important particular case: A=1 and =ej (unit complex exponential)

(A and/or  may be complex)

-3 -1 1 2 3 n-2 0

A-3

4 5

…

…

A-2

A-1

A

A

A2

A3

Characterization and representation of discrete signals
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sinusoidal sequences

0 - frequency of the sinusoidal sequence [radians]

 - phase of the sinusoidal sequence [radians]

NOTE: since A.cos[n(0+k2)+] = A.cos[n0+] with k integer, frequency 0

is only defined, for example, in the range  ]-, +] or [0, 2[ 

combination of sequences

It is common to combine basic discrete-time sequences to express a large 

variety of signals, e.g. :

n0 1 2 3

… …

Characterization and representation of discrete signals
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periodic sequences

those verifying x[n]=x[n+N], for a given integer N and for any value of 

n:  - < n < +

NOTE: since the n index may only take integer values, the counter-intuitive 

case may occur of a function, such as cos(n0+), not showing periodicity in 

n, for a given 0, as for example cos(n) :

QUESTION: Under what condition is that 0 insures periodicity in n ?

A : cos(n0+) = cos(n0+N0+) ,  N0 = k2  0=2k/N

n

……

Characterization and representation of discrete signals
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• Discrete-time systems

– they transform an input discrete-time sequence into an output discrete-

time sequence

– Example 1 (delay) :    y[n]=x[n-nd] , nd positive integer = system delay

– Example 2 (moving average) :

the output at position n is the average of the (N1+N2+1) input samples 

between position n-N2 and position n+N1

discrete

system

x[n] y[n]

Characterization and representation of discrete systems
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• Properties of discrete-time systems

memory - a memoryless system depends only on the input sample at 

position n to generate an output sample at the same position

• example: 

linearity – a linear system complies with the superposition principle

• example: the “accumulator” function                             is linear

• example: function                              is non-linear

discrete

system

Characterization and representation of discrete systems
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time invariance – a system is time-invariant if a delay of the input 

sequence gives rise to the same delay of the output sequence

• example: the “accumulator” is time-invariant because if the 

input samples are delayed by n0, so are the output samples:

• example: the decimator system y[n]=x[nM] is not time-invariant

causality – a system is causal (i.e., it is non-anticipative) if for any n0, the 

output of the system at position n=n0 depends uniquely on the input 

samples for n  n0

• example: y[n]=x[n]-x[n-1] is causal

• example: y[n]=x[n+1]-x[n] is not causal

discrete

system

x[n] y[n]

x[n-nd] y[n-nd]

Characterization and representation of discrete systems
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stability – a system is stable if any bounded input sequence gives rise 

to an output sequence that is also bounded

• example: the system                           is stable

• example: the system is not stable   (e.g., for x[n]=0 )

• example: the system                              is not stable   (e.g., for x[n]=u[n] )

NOTE: a sufficient proof of instability is to find/show a case not complying 

with the stability condition

discrete

system

|x[n]|  Bx < ,   n |y[n]|  By < ,   n

Characterization and representation of discrete systems
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LTI systems: response to a discrete input

• response to a discrete-time input

– if the impulse response is not time-invariant, we have:

this result is of limited usefulness since the response of the system to a linear 

combination of input impulses is the same combination of the individual responses to the 

input impulses which may depend on the position of the impulses (time variance)

– now, if we consider time-invariance:

the output of an LTI system is expressed as a function of a single impulse 

response !

linear

system

LTI

system
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Linear time-invariant systems (LTI)

– we may thus say that an LTI system is completely characterized by its 

impulse response  given h[n], it is possible to know the response of 

the LTI system to any input:

this equation consists in the discrete-time convolution or, in other 

words, the convolution sum which is reminiscent of the familiar 

convolution integral for continuous-time signals:

• discrete-time convolution

y[n]= x[k]h[n-k]
k=-

+

independent variable parameter (shift in k) !

independent variable
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LTI systems: the discrete convolution

example of the discrete convolution between two sequences:

– Method 1: solving by realizing k, we obtain a weighted sum of impulse 

responses: y[n]=x[0]h[n]+x[1]h[n-1]

-3 -1 1 2 3 n-2 0

1 ……
2

3h[n]

-3 -1 1 2 3 n-2 0

……

2
x[n]

2

-3 -1 1 2 3 n-2 0

2 ……
4

6x[0]h[n]

-3 -1 1 2 3 n-2 0

2 ……
4

6x[1]h[n-1]

y[n]=6[n]+10[n-1]+6[n-2]+ 2[n-3]

-3 -1 1 2 3 n-2 0

2 ……

10

6y[n] 6
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– Method 2: solving by realizing n, we follow a computational procedure 

similar to the convolution between two continuous-time signals (one of 

discrete sequences is time-reversed and is shifted from - till +, and for each 

value of the shift, the accumulation of the sample-to-sample product between 

this sequence and the other –frozen- signal is computed). Using our example:

we have:

it is clear that

n<0, y[n]=0. For

example, for n=-3 we have:

y[-3]=x[0]h[-3]+x[1]h[-2]=0

-3 -1 1 2 3 n-2 0

1 ……
2

3h[n]

-3 -1 1 2 3 n-2 0

……

2
x[n]

2

-3 -1 1 2 3 k-2 0

……

2
x[k]

2

…

-3 -1 1 2 3 k-2 0

1 …
2

3 h[-k]

…

nn-1 kn-2

…
h[n-k]

1
2

3

LTI systems: the discrete-time convolution
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-3 -1 1 2 3 k-2 0

……

2
x[k]

2

…

-3 -1 1 2 3 k-2 0

1 …
2

3 h[-k]

…

-3 -1 1 2 3 k-2 0

1 …
2

3 h[1-k]

…

-3 -1 1 2 3 k-2 0

1 …
2

3 h[2-k]

…

-3 -1 1 2 3 k-2 0

1 …
2

3 h[3-k]

y[0]= x[k]h[-k]=x[0]h[0]=6

y[1]=  x[k]h[1-k]= x[0]h[1]+x[1]h[0]=10

y[2]=  x[k]h[2-k]= x[0]h[2]+x[1]h[1]=6

y[3]= x[k]h[3-k]=x[1]h[2]=2

LTI systems: the discrete convolution
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it should be noted that y[n]=0 for n>3 since x[k] and h[n-k] are not 

simultaneously different from zero for any value of k.

In summary:

Another example: h[n]=u[n]-u[n-N] and   x[n]=nu[n] ,  with ||<1

y[n]=6[n]+10[n-1]+6[n-2]+ 2[n-3]

n

x[n]

0 1 2 3 54

*

QUESTION: which of the previous two methods is more convenient ?

= ?

n

h[n]

0 1 2 N-1

…

LTI systems: the discrete convolution
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y[n]= x[k]h[n-k]
k=-

+

k

x[k]

0 1 2 3 54

h[-k]

k0 1 21-N

…

k0 N-1

…

h[N-1-k]

Graphically, it is apparent that we have three intervals for 

which the y[n] result may be given by a single expression 

that is valid for all the values of n inside each interval:

Interval 1: n<0    y[n]=0

Interval 2: 0n  N-1

Interval 3:  N-1 n

LTI systems: the discrete convolution
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– Interval 1: n < 0, y[n]=0

– Interval 2: 0 n  N-1

– Interval 3: n  N-1

u[k]  1 for k  0

u[n-k]  1 for n-k  0  k  n

u[n-k-N]  1 for n-k-N  0  k  n-N

final: k  0  &&  n-N+1  k  n  n-N-1  k  n

(it is easier to conclude graphically)

 1 for n-N+1  k  n

final: k  0  &&  n-N+1  k  n  0  k  n

(it is easier to conclude graphically)

LTI systems: the discrete convolution
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– Since the sum of M terms of a geometric series is given by the

expression:                                (for an arithmetic series it would be:)

the final result is:

0 1 2 3 4 5 6 7 n

y[n]

In this illustrative case, what is the value of N ?

LTI systems: the discrete convolution
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• Since an LTI system is completely characterized by its impulse response, 

its properties follow those of the discrete-time convolution

– commutative property:

– distributive property (of the convolution relative to the sum):

Properties of LTI systems

h[n]

x[n] y[n]

 x[n]

h[n] y[n]


h1[n] y[n]

h2[n]

x[n]

x[n]
h1[n]+h2[n]

x[n] y[n]
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– series of systems:

– parallel of systems:

h1[n]
x[n] y[n]

h2[n]

h1[n]

x[n] y[n]

h2[n] h2[n]

x[n] y[n]

h1[n]

h1[n]*h2[n]

x[n] y[n]





h1[n]+h2[n]

x[n] y[n]



Properties of LTI systems
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– condition for the stability of an LTI system: if and only if its impulse 

response is absolutely summable:

– condition for the causality of an LTI system:

example: what is the impulse response of each one of the following LTI systems ?

since h[n] = y[n] we have:

(necessary and sufficient condition)

x[n]=[n]

Properties of LTI systems
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• According to the number of non-zero samples of its impulse response, an 

LTI system may be classified as:

– FIR (finite-duration impulse response): if h[n] has a finite number of non-

zero samples

• NOTE 1: FIR systems are always stable

• NOTE 2: a non-causal FIR system may be converted into a causal FIR 

system by adding a suitable delay

– IIR (infinite-duration impulse response): if h[n] has an infinite number of 

non-zero samples

• NOTE: IIR systems may be stable, for example:

• NOTE: IIR systems may also be unstable, for example:

LTI systems: FIR and IIR systems
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• Consists in an alternative way (relative to the impulse response) to 

characterize (although not completely) a sub-class of LTI systems (the 

characterization is only complete if it is added, for example, that the system is causal 

and starts from rest) by relating a combination of delayed inputs with a 

combination of delayed outputs, which describes (a realization of) the 

system:

– NOTE 1: this form emphasizes the recursive nature of the relation: the output is 

obtained after the input sequence is known and after the previous values of the 

output sequence are known.

– NOTE 2: if N=0, we have:

which reveals we are dealing with an FIR system, while the more general 

equation describes an IIR system.

Constant-coefficient difference equations
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Example:  what is the impulse response of the causal system described by the 

difference equation:  y[n]=ay[n-1]+x[n]

A: considering x[n]=k[n] e admitting that the system starts from rest:

delay

x[n] y[n]

a

n

-1

0

1

2

3

4

:

n

x[n]

0

k

0

0

0

0

:

0

y[n-1]

0

0

k

ak

a2k

a3k

:

an-1k 

y[n]

0

k

ak

a2k

a3k

a4k

: 

ank this means: h[n]=anu[n]

NOTE: the same system may be described by different difference equations; a specific 

difference equation is indicative of a specific realization of a discrete system among several 

possible alternatives (topic to be detailed later on).

Constant-coefficient difference equations
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• Continuous versus discrete

– a continuous-time signal is a real or complex function of one or more 

independent variables that, most often, are real-valued, e.g.  �� �
• the round brackets reinforce that the independent variable is continuous-time

– a discrete-time signal is a real or complex function of one or more 

independent variables that can take on integer values only, e.g.  ����
• the square brackets denote that the enclosed variable is discrete-time

Basic signal properties
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• Periodic versus aperiodic

– a periodic discrete-time signal is one whose structure or pattern repeats 

in � for some finite period �, i.e.

� � � � � 	 � ,  � ∈ ℤ\ 0 ,  ∀ � ∈ ℤ

Question: if a periodic signal is obtained by repeating periodically an 

aperiodic one, what condition makes that the aperiodic signal is 

recognizable in the periodic signal ?

Basic signal properties
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• Deterministic versus random
– a deterministic signal is specified by a mathematical function, an 

algorithmic procedure, or computational method, which completely 

determines the signal value at any point in the discrete-time domain �
– quite often, these deterministic signal representation alternatives are 

replaced by a lookup table (LUT) when trading computation for memory 

is desired

– a notable feature of a deterministic signal is that it is predictable

– if a signal is deterministic, so are its statistical properties, for example, 

the probability density function (PDF) of the signal amplitudes

– a random signal is characterized by unpredictability and uncertainty 

concerning the value of each sample in a discrete-time sequence

– instead of being governed by a deterministic rule, the realization of 

each sample in a random sequence is governed by a probabilistic 

model underlying the stochastic process that generates that sequence

– although a random signal is unpredictable at sample level, certain 

practical assumptions, such as stationarity, make that ‘latent’ 

probabilistic attributes underlying a random signal, are predictable

Basic signal properties
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• Deterministic versus random
– a stationary random signal may exhibit a specific PDF, for example, 

uniform, of Gaussian

– these possibilities are illustrated next and have been created using the 
Matlab functions rand() and randn()

Basic signal properties
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• Energy versus power
– a discrete-time signal � � is classified as an energy signal if its energy 

(�) is finite, i.e. if

� � � ���� �
��

����
< ∞

– any finite-length sequence is always classified as an energy signal as 

long as its samples have a finite magnitude

– a discrete-time signal � � is classified as a power signal if its energy is 

infinite but a finite result is obtained when the energy of an arbitrary 

large number of samples is divided by the number of samples

� � lim�→�
1

2� 	 1 � ���� �
��

����
< ∞

– in the case of an N-periodic signal

� � 1
� � ���� �

��#

��$
< ∞

Basic signal properties
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• Sinusoidal sequences with a prescribed SNR
– frequently, discrete-time test signals need to be generated that have a 

specific level of noise contamination; most often, these test signals 

consist of a single complex exponential, or a single sinusoidal 

sequence, and the noise consists of complex or real-valued Gaussian 

noise

– the severity of the noise contamination is objectively determined by the 

ratio between the average power of the signal, which we represent as 

�%, and the average power of the noise, which we represent as ��

– that ratio is typically evaluated on a logarithmic scale in tenths of a unit 

called Bel, which is usually abbreviated to deciBel, or dB; thus, this 

scale expresses a proportion which is called the Signal-to-Noise Ratio 

(SNR) and is defined as

&�' � 10 log#$
�%
��

Basic signal properties
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• Sinusoidal sequences with a prescribed SNR
– the following example illustrates the case of a real sinusoid that is 

contaminated by Gaussian noise according to a prescribed SNR; the 

result is confirmed numerically in Matlab

Basic signal properties
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• concept and meaning

– the auto-correlation and the cross-correlation are two important 

discrete-time signal processing functions that consist in specific forms 

of the discrete-time convolution

– they are designed to evaluate the similarity between two discrete-time 

signals, or waveforms

– if the two waveforms are based on the same discrete-time signal, then 

the function is called auto-correlation whereas if the two waveforms are 

based on different discrete-time signals, then the function is called 

cross-correlation

The auto-correlation and the cross-correlation
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• definition of the auto-correlation
– the auto-correlation (*+�ℓ�) assesses the similarity between between a 

finite-energy reference signal, � - , and the conjugate of its shifted 

version �∗ - / ℓ , where ℓ represents a discrete-time shift, also 

commonly referred to as lag

– it is obtained as the discrete-time convolution between � ℓ and the 

conjugate of its time-reversed version, �∗ /ℓ :

– The auto-correlation may be regarded as a self-similarity measure for a 

given discrete-time shift

– if the self-similarity is strong, then the auto-correlation exhibits a high 

absolute value; conversely, if the self-similarity is weak, then the auto-

correlation exhibits a small absolute value, nearing zero in the case of 

strong dissimilarity

The auto-correlation and the cross-correlation
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• definition of the cross-correlation
– the cross-correlation (*+0�ℓ�) assesses the similarity between between 

a finite-energy reference signal, � - , and 1∗ - / ℓ that represents the 

conjugate of another discrete-time signal, y - , that is also affected by a 

lag ℓ

– it is obtained as the discrete convolution between � ℓ and 1∗ /ℓ :

– if the similarity between the two waveforms is strong for a given lag, 

then the cross-correlation function exhibits a high absolute value for 

that lag, however, if the similarity is weak, then the cross-correlation 

exhibits a small absolute value; when it nears zero, one may say the 

signals are approximately uncorrelated

The auto-correlation and the cross-correlation
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• auto-correlation and cross-correlation examples 
– a special waveform � � is designed such that its auto-correlation 

consists of a single impulse, i.e. *+ ℓ � 2 ℓ
– a second waveform y � is generated that consists of a noisy version of 

� � 	 3 , i.e.  1 � � ��� 	 3� 	 4���, where 4 � is a random sequence 

that is not correlated to � �
– both *+ ℓ and *+0 ℓ are represented in the following figure 

The auto-correlation and the cross-correlation
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• auto-correlation and cross-correlation properties 
– in the case of the auto-correlation, it can be easily shown that if the lag 

is zero, then we obtain the energy of the signal

*+ 0 � � ��-� �
��

5���
� �+

– the auto-correlation is conjugate-symmetric, i.e. *+ ℓ � *+∗�/ℓ�

– the cross-correlation verifies *+0 ℓ � *0+∗ �/ℓ�
• which does not mean conjugate-symmetry

– it can also be shown that 

– and, as a particular case, the auto-correlation is upper bounded by the 

signal energy:

*+ ℓ 6 *+ 0 � �+

The auto-correlation and the cross-correlation
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• auto-correlation and cross-correlation properties 
– the results in the previous slide can be used to normalize both auto-

correlation and cross-correlation functions, which leads to 7+ ℓ and 

7+0 ℓ :

Question: the previous results have been developed for energy signals, 

how should they be adapted to power signals ?

The auto-correlation and the cross-correlation


