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Summary

• Sampling and reconstruction of continuous signals

– Introduction

– Periodic sampling of continuous-time signals

– Frequency domain analysis of periodic sampling

– Reconstruction of continuous-time signals from samples

• Ideal reconstruction

• Zero-order real reconstruction

– Discrete-time processing of continuous-time signals
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Sampling of continuous-time signals

• Introduction

– most discrete-time signals result from sampling (i.e. discretization in time) 

of continuous-time signals

– under certain conditions, a discrete-time signal may be an exact 

representation (i.e. there is no loss of information) of a continuous-time 

signal

– any form of processing of a continuous-time signal may be realized in 

the discrete domain, which requires the sampling of the continuous-

time signal before processing, and the reconstruction of the 

continuous-time signal from samples after the processing stage
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• Introduction (cont.)

– is discrete-time processing preferable to analog processing ?

– e.g. is there any non-trivial analog filter with exact linear phase ? (but 

easy to realize using a discrete-time system…)

+
-

R1 R2

C1

C2

LPF Discrete-time processingA/D LPFD/A

“anti-aliasing”

filter

anti-imaging

filtersampling reconstruction

Sampling of continuous-time signals
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• Context

– minimal structure for the discrete-time processing of analog signals:

– in the following we admit that the sampling rate is constant and that 

the A/D and D/A converters have infinite resolution (i.e., no quantization 

errors)

– QUESTION: in the absence of discrete-time processing, i.e., if 

y[n]=x[n], and admitting ideal A/D and D/A converters, under which 

conditions is it possible to sample and reconstruct an analog signal 

without loss of information, i.e., such that y(t)=x(t) ?

LPF A/D Discrete system D/A + S/H LPF

x(t) y(t)
x[n] y[n]

t

x(t)

n

x[n]

t

y'(t)

n

y[n]

t

y(t)

Sampling of continuous-time signals
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– in order to answer the previous question, we analyze two 

fundamental steps in the represented block diagram : the time 

discretization of the continuous-time signal by means of a periodic 

sampling (continuous-time signal  discrete-time signal conversion) and 

the time reconstruction of the continuous-time signal from samples 

(discrete-time signal  continuous-time signal conversion) 

• periodic sampling

T: sampling period (sec.)

1/T: sampling frequency (Hertz)

s=2/T: angular sampling frequency (radians/seg.)

– NOTE: this operation is only invertible  (i.e., the ambiguity is avoided of two different 

signals giving rise to the same discrete signal) if xc(t) is constrained.

t

xc(t)

t

xa(t)

T0-T 2T 3T 4T 5T n

x[n]

10-1 2 3 4 5

Sampling of continuous-time signals
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– time discretization: how to relate X(ej) and Xc() ?

and also:

thus:

A/D

xc(t) x[n]

s(t)

xc(t) x[n]= xa(nT)

s(t)

XC() Xa()

• • • • • •

-2T -T 0 T 2T t

1

• • • • • •

-4/T -2/T 0 2/T 4/T 

2/T

F

Frequency domain analysis of periodic sampling

F

F
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 The previous result says that except for a scale factor and a 

normalization (by 1/T) of the frequency axis (making that the “analog” 

frequency k2/T=ks be projected in the “digital” frequency k2, for any 

integer K) the spectra X(ej) and Xa() are similar. It also says that, as  

result of ideal sampling, the spectrum of the continuous-time signal 

appears replicated at all multiple integers of the sampling frequency.



1

Xc()

Max-Max

• • •
• • •

2/T 4/T 

Xa()

-2/T 0

/T

1/T

-/T

• • • • • •

2 4 

X(ej)

-2 0



1/T

-

Max

TMax

Nyquist frequency

Frequency domain analysis of periodic sampling
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The Nyquist sampling theorem

– in order to avoid spectral overlap (i.e., aliasing) between replicas of the base-

band spectrum, it must be ensured that :

MAX < /T= S/2  2FMAX < FS  FS  > 2FMAX

– this means that the bandwidth of the base-band signal must be limited to less 

than half the sampling frequency. This condition is typically enforced by a low-

pass filter just before the A/D converter, thus named “anti-aliasing” filter.

– if this condition is guaranteed, as the illustration suggests, it is possible to 

recover Xc() from X(ej), using an ideal low-pass continuous-time filter, with 

gain T and cut-off frequency MAX < p < S -  MAX

these aspects reflect the Nyquist sampling theorem:

– is xc(t) is a band-limited signal such that Xc() =0 for || > MAX, then xc(t) is 

uniquely determined (i.e. may be unambiguously reconstructed) from its samples 

x[n]=xc(nT) with S=2/T > 2MAX

NOTE: S/2=/T is commonly known as the Nyquist frequency.

Frequency domain analysis of periodic sampling
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 what if the sampling condition is violated, i.e., if FS < 2FMAX ?

Answer: there is spectral overlap ( “aliasing” ) distorting the signal, and preventing 

the recovery of the original spectrum after low-pass filtering.



1

Xc()

Max-Max

• • • • • •

2/T 4/T 

Xa()

-2/T 0 /T

1/T

-/T

• • •
• • •

2 4 

X(ej)

-2 0 

1/T

-

Frequency domain analysis of periodic sampling
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example: case of a continuous-time signal (co-sinusoidal function) correctly and 

incorrectly sampled



Xc()

0-0





Xc()

0-0



• • • • • •

S
2S

Xa()

-S
0 0-0 

• • • • • •

S
2S

Xa()

-S
0 0-0 

xc(t)=cos(0t)  , 0 < S/2  there is no “aliasing”

xc(t)=cos(0t)  , 0 > S/2  there is “aliasing”

recovered signal after low-pass filtering, with cut-off at S/2 : xc(t)=cos(0t)

recovered signal after low-pass filtering, with cut-off at S/2 : xc(t)=cos[(S-0)t]

Frequency domain analysis of periodic sampling
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Reconstruction from samples

• Case 1: ideal reconstruction

– as can be concluded from the spectral representation of Xa() (’slide’ nº 

7), if we preserve solely the base-band replica after low-pass filtering, 

then it is possible to recover the spectrum Xc(); the same is to say: it 

is possible to recover xc(t). This is the principle that we will illustrate 

next using y[n].

• • • • • •

-2 -1 0 1 2 n

• • • • • •

-2T -T 0 T 2T t

• • • • • •

-2T -T 0 T 2T t -/T /T 

D/A

y[n]
ya(t)

s(t)

ideal

reconstruction

filter

yc(t)

hr(t)

ya(t)

s(t)

*

hr(t)

yc(t)y[n]

t

• • • • • •

-2T -T 0 T 2T
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The first step going from the discrete-time domain to the continuous-time 

domain involves placing the pulses of the discrete sequence y[n] at 

instants uniformly distributed in time, thus obtaining ya(t). It should be 

noted that this signal has the same spectrum of xa(t) since we presume 

that y[n]=x[n].

By submitting the continuous-time signal ya(t) to an ideal low-pass filter 

having impulse response hr(t), gain T and cutting-off frequency at /T:

we obtain:

F

hr(t)

-T T t2T-2T

1

Hr()

-/T /T 

T

F

Reconstruction from samples
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This result reveals that:

• at the sampling instants yc(nT)=y[n]=x[n]=xc(nT), given that all sinc

functions in the summation are zero, except one (that centered at t=nT) whose 

value is ‘one’,

• at intermediary instants, the continuous-time signal results from the sum of 

all sinc functions, i.e. the filter hr(t) implements an interpolation using all 

values of y[n]

using frequency-domain analysis, and considering y[n]=x[n] which 

implies: 

It can be concluded that the result of filtering is:

which means that, considering ideal conditions and the Nyquist criterion, it is 

possible to reconstruct the continuous-time signal from its samples, without loss 

of information. Question: the reconstruction filter is also known as anti-imaging 

filter, why ?

• • •

• • •

-2T -T 0 T 2T t

yc(t)

F

Reconstruction from samples
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• Case 2: zero-order real reconstruction
– real electronic devices, in particular D/A converters, do not operate using pulses but use 

instead more physically tractable signals such as boxcar function approximations. Let us 

consider the case closest to reality where the D/A converter is associated with a “sample-

and-hold” device that ‘retains’ the value of a sample during a sampling period, giving rise to 

a staircase-like signal:

t-T/2 T/2

y[n]

D/A + S/H

s(t) p(t)

yr(t)
reconstruction filter

ideal -compensated

yc(t)

hr(t)

ya(t)

s(t)

*

p(t)

yr(t)y[n]

*

hr(t)

yc(t)

• • • • • •

-2 -1 0 1 2 n

• • • • • •

-2T -T 0 T 2T t t

• • • • • •

-2T -T 0 T 2T

• • • • • •

-2T -T 0 T 2T t

ya(t) yr(t) yc(t)y[n]

• • • • • •

-2T -T 0 T 2T t -/T /T 

Reconstruction from samples
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as considered before:

and for the boxcar function of width T:

and, therefore, yr(t) results as:

F

F

F

Reconstruction from samples
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whose spectral representation is:

from where it can be concluded that the zero-order reconstruction distorts the 

Y(ejT) spectrum in a way that can be compensated for, if we consider the 

base-band replica which is the one we want to recover; in addition, all other 

replicas which we want to eliminate, are strongly attenuated which alleviates 

the filtering effort of hr(t).

• • • • • •

2/T 4/T -2/T 0

/T

1/T

-/T

Y(ejT)

Max

P()T

• • • • • •

2/T 4/T -2/T 0

/T

-/T

Yr()

Max

1

Reconstruction from samples
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The filter hr(t) must then not only reject the undesirable spectral images, but also 

compensate the magnitude distortion affecting the base-band replica :

presuming also that y[n]=x[n], then:

and:

subject to the condition that filter Hr() is low-pass, with cut-off frequency at /T, 

but is also compensated such as to reverse the sin(x)/x distortion, i.e. :

F

Reconstruction from samples
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Then, it results graphically:

which means the output of hr(t) is also given by:

as we have already concluded before.

NOTE 1: the compensation sin(x)/x may be inserted at any stage of the processing, including 

(and perhaps preferably ! ) at the discrete processing stage, with all the known advantages.

NOTE 2: in addition to the ‘zero-order’ reconstruction, there are other possibilities (e.g. the 

‘one-order’ reconstruction) !

Yc()



1

Max-Max



1

Hr()

-/T

/2

/T



• • • • • •

2/T 4/T -2/T 0

/T

-/T

Yr()

Max

ideal filter

real filter

Reconstruction from samples
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Discrete-time processing of continuous-time signals

– In our previous analysis we have admitted y[n]=x[n], i.e., absence of 

discrete-time processing so as to show the possibility of sampling and 

reconstruction an analog signal. It is important to assess now the 

impact on the analog signal of a discrete-time processing as this is the 

most common scenario:

– Although it is possible/desirable to design systems where the A/D 

sampling frequency is different from the D/A sampling frequency, (e.g.

that is the case of oversampling that is used in CD/MP3 players), we admit in 

this analysis that both are equal.

Discrete ProcessingA/D D/A

xc(t) yc(t)x[n] y[n]

T1 T2
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Discrete-time processing of continuous-time signals

– If the discrete-time system is LTI and is characterized in the frequency 

by H(ej), then:

but since:                             which means:

We have also seen that considering for example zero-order 

reconstruction, then:

and we obtain finally:

we may thus conclude that:

• if the ‘anti-aliasing’ filter at the input of the system enforces Xc()=0  for  

||>/T (or if xc(t) possesses this property already), then there is no overlap of 

spectral images in the summation

• if the reconstruction filter eliminates spectral images for ||>/T  and 

ensures sin(x)/x compensation, then the previous expression simplifies to:
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Discrete-time processing of continuous-time signals

– we may finally conclude that if the discrete-time system is linear and 

time-invariant, from the input to the output of the system all happens 

as if there is an analog processing characterized by Heff(), whose 

relation to discrete-time processing is:

Example: continuous-time low-pass filtering by means of a discrete-time filter

given the filter:                                            whose frequency response is 

-periodic, with period 2 :

• • • • • •

2 4 -2 0 -

H(ej)

p
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Discrete-time processing of continuous-time signals

then:

A few reasons justifying that this analog filter implemented in the discrete-time 

domain may be preferable:
• as the cut-off frequency p=p/T depends on T, using the same system, we may vary the effective 

analog cut-off frequency (i.e., we have adjustable filters), by acting solely on the sampling frequency (1/T),

• when we need a filter with demanding specifications, involving for example very narrow transition 

bands, or high stop-band attenuation, or many bands with different gains and attenuations; its 

realization in the analog domain is difficult, probably very expensive, and highly dependent on the 

characteristics of the analog components, and in any case it will show a strongly non-linear phase 

response. Moving that filtering effort to the discrete-time domain eliminates almost completely these 

inconveniences. A specific case where that is true involves A/D and D/A operations, that require, 

respectively, “anti-aliasing” and “anti-imaging” filters, both low-pass. The analog filter specifications 

are ‘alleviated’ (and in certain cases no analog filtering at all is needed) transferring most of the filtering effort 

to the discrete/digital domain although requiring a significant increase of the sampling frequency. In 

the first case, (i.e. after A/D conversion), decimating digital filters are used and in the second case (i.e.

before D/A conversion), interpolating digital filters are used. We will return to these topics later on ! 

• • • • • •

2/T 4/T -2/T 0-/T

Heff()

p


